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Note: Read the set of lecture notes called “ARIMA time series models (a quick rehearsal)” first, before you read this one, in particular when you are not familiar with ARIMA models.

The scaled model for error

Alho’s scaled model for error is a class of simple stochastic cohort component models that are capable of approximating a wide variety of error structures. The description below focuses on variances and covariances. Expected values of the parameters of the cohort component forecast are identical to the parameters of a traditional deterministic cohort component forecast. The scaled model has been implemented in the Program for Error Propagation (PEP), see http://www.joensuu.fi/statistics/software/pep/pepstart.htm .
In the scaled model for error that was used to simulate the UPE forecasts, the variances of the logarithms of the future age-specific fertility and mortality rates are represented in terms of the following model (Alho and Spencer,  “Statistical Demography and Forecasting” Springer 2005; Alho, Journal of Official Statistics 13(1997), 203-225).

Suppose the true age-specific rate in age j during forecast year t > 0 is of the form

R(j,t) = F(j,t)exp(X(j,t)), 
where F(j,t) is the point forecast, and X(j,t) is the relative error
. Suppose that the error processes are of the form 
X(j,t) = ε(j,1) + ... + ε(j,t).
X(j,t) could be a random walk, for example. We consider a more general case, however, assuming that the error increments are of the form 
ε(j,t) = S(j,t)(ηj + δ(j,t)).

Here, the S(j,t) > 0 are deterministic scales to be specified, whence the name scaled model. The model assumes that for each j, the random variables δ(j,t) are independent over time t = 1,2,... In addition, the random variables {δ(j,t), j = 1,..., J; t = 1,2,...} are independent of the variables {ηj, j = 1,..., J}, and 
ηj ~ N(0, κ),   δ(j,t)  ~ N(0, 1 - κ),

where 0 ≤ κ < 1 is a parameter to be specified. We see that Var(ε(j,t)) = S(j,t)2.

A positive kappa means that there is systematic error in the time trend of the rate. (Since κ = Corr(ε(j,t), ε(j,t+h)) for all h > 0, we can interpret κ as a constant autocorrelation between the error increments.) For example, under a random walk model the error increments would be uncorrelated with κ = 0. Together, the autocorrelation κ and the scale S(j,t) determine the variance of the relative error X(j,t).

Example 1. Consider the special case of constant scales, or S(j,t) = S(j) for all t. It follows that

Var(X(j,t)) = a(j)t + b(j)t2,

where a(j) = S(j)2(1 – κ) and b(j) = S(j)2κ. If a(j) > 0 and b(j) ≥ 0 can be estimated from the data, then the corresponding values of S(j)2 and κ can be deduced as 
S(j)2 = a(j) + b(j) and κ = b(j)/(a(j) + b(j)). 
For intuition, note that the model with constant scales can be interpreted as a random walk with a random drift. The relative importance of the two components is determined by κ.

The representation of error in net migration in PEP is done in absolute terms, using variables of the same type as ε(j,t), above, but now “j” takes only two values and refers to sex. Dependence on age is not stochastic, but assumed to be deterministic, and it is given by a fixed distribution g(j,x) over age x for each j = 1, 2.

I.e., the error of net migration in age x, for sex j, during year t > 0, is additive and of the form

Y(j,x,t) = S(j,t)g(j,x)(ηj + δ(j,t)).

The assumption of perfect dependence across age is not motivated by the belief that there would not be any cancellation of error across age in migration. Surely there is. Instead, the quality of migration data is too poor in most countries to merit a more refined approach.

The key properties of the scaled model are:

* Since the choice of the scales S(j,t) is unrestricted, any sequence of non-decreasing error variances can be matched. In particular, heteroscedasticity can be allowed;

* Any sequence of cross-correlations over ages can be majorized using the AR(1) models of correlation;

* Any sequence of autocorrelations for the error increments can be majorized. This means that we can always find a conservative approximation to any covariance structure using the model.

Naive errors

Empirical errors observed for old forecasts are frequently used to get an impression of the uncertainty in a new forecast. One problem in the use of past errors as a guide is that the number of observations (i.e., the number of available past forecasts) diminishes rapidly when lead time is increased. There is no country in the world for which there would be more than a handful of forecasts with lead time exceeding 50 years, whose error can be assessed. Yet, in pension problems, even longer lead times must be considered.

As a way out, Alho proposed in 1990 that one resort to so-called naïve, or baseline, forecasts. It had been noted that official forecasts of fertility, in industrialized countries, typically assume little change from the current level (Lee, JASA 69 (1974), 607-617). Thus, one can approximate past forecasts by assuming no change. This forecast is easily computed for any time point in the past, even if no forecast was actually carried out at that time. Its empirical error can similarly be computed with ease, as long into the future as there are data points. In the case of mortality an assumption of a constant rate of change has been shown to be competitive with official forecasts (Alho Int.J.Forec. 6(1990) 521-530), so it can serve as a baseline forecast. 

Example 2. Suppose we have data for years t = 1, 2,…, T. Suppose a baseline forecast, made at t with lead time k = 1, 2,… for X(j, t + k) is denoted by F(j,x,k). The absolute value of its error is then e(j,t,k) = │F(j,x,k) – X(j,t + k) │. It follows that we have a collection of values Z(j,k) = {e(j,t,k) │t = 1, 2,…, t – k} available. These can be used to estimate the parameters a(j) and b(j) of Example 1 in various ways. In order to discount the values of outliers caused by, e.g., wars, a robust procedure is to determine first the medians M*(j,k) = median of the set of values Z(j,k), for every k = 1, 2,… of interest. Then, since the 0.75 fractile of a standard normal distribution is 0.6745, we can find a standard deviation for a normal distribution whose absolute value has the same median, as M(j,k) = M*(j,k)/0.6745. These can serve as our basic data. Returning to the case of Example 1, we note that by minimizing the sum of

squares, 
Σt (M(j,t)2 – a(j)t – b(j)t2)2 ,

we can find values a(j) and b(j) that fit as closely as possible. If the values satisfy the necessary positivity conditions, we can deduce the parameters of the scaled model.

The example given above is by no means the only approach available. First, in the case of fertility and mortality we consider relative error X(j,t). Absolute error could also be used, but given the large variations in the level of the processes, relative error is a more comparable measure. Second, in assessing the magnitude of error we do not subtract the mean. This means that we are including the possible forecast bias in the error estimate. This is motivated by the fact that we do not believe that biases can be avoided in the future either. Third, the added twist of using the medians rather than averages typically reduces the estimated uncertainty. This can be motivated, if the intended use of the predictive distribution is to give an indication of how much variability one should expect under, normal, peace-time conditions. For analyses with other background assumptions, one might resort directly to root mean squared error or other measures of spread.

In general, error estimates based on naïve forecasts should be conservative in the sense of providing intervals that are potentially too wide. Indeed, it is possible to find countries and periods during which naïve forecasts have been be very bad. However, this is also true for official forecasts, and as discussed in Alho (1990), official U.S. forecasts of mortality have not been better than naïve forecasts in the post World War II period. Note also that like error estimates based on past forecasts, error estimates based on naïve forecasts are “self-validating” in that they are correct if volatility does not change. In this respect, they are superior to purely model based estimates.

Specification of uncertainty in UPE

An advantage we had over earlier national analyses in this field was that we had 18 countries under scrutiny simultaneously. This allowed us to discount idiosyncracies that could dominate the forecast results of an individual country. This is one of the traditional methods of “borrowing strength” from similar units of observation that is widely used in small domain estimation.
To represent the uncertainty of forecasting, cohort-component book-keeping was applied 3,000 times, with stochastically varying values for age-specific mortality, age-specific fertility, and net migration.

The method is based on the scaled model for error. Within each country, the main characteristics of the model (as used in the forecast) are qualitatively as follows:

* Uncertainty in age-specific mortality and age-specific fertility is treated in the relative (logarithmic) scale, for net-migration uncertainty is treated in the additive scale. 

* Uncertainty is assumed to increase with forecast year. The (increasing) pattern of error variances is represented by an empirically based choice of the scales of the model. 

* Error increments of each age and sex group have an empirically based constant non-negative autocorrelation. 

* Cross-correlation of errors across age is represented by an empirically based AR(1) process in the age dimension, with non-negative correlation at lag = 1. 

* Correlation between error increments of male and female death rates, in each age, is determined empirically. 

* Correlation between errors in male and female net migration is determined empirically.. 

Uncertainty in fertility, mortality, and migration were assumed to be independent of each other. A normal distribution was used to represent error increments for each age- and sex-group. 

In the UPE applications it was assumed that Corr(ηi, ηj) = ρ|i-j|, and also 

Corr(δ(i,t), δ(j,t)) = ρ|i-j|, for some 0 < ρ < 1. This allows for less than perfect correlation in age-specific mortality and fertility, across age j.

 
Uncertainty parameters were estimated from observed data for countries with good data. Scales and correlations were specified such that, had they been used in the past, the prediction intervals of the variables would have had the specified level of coverage. For details see Alho, Cruijsen & Keilman “Empirically based specification of forecast uncertainty” (pp. 44-50 of Alho, Hougaard Jensen & Lassila Uncertain Demographics and Fiscal Sustainability Cambridge Un. Press 2008).
Mortality

Scales for error increments were specified so they depended both on age and forecast year. 

Same scales were used for all countries and for men and women. The scales were estimated from long data series from Austria, Denmark, Finland, France, West Germany, Italy, the Netherlands, Norway, Sweden, Switzerland, and the U.K. The estimates were based on the median level of uncertainty in the past, averaged across countries. 

Autocorrelation of error increments (κ) was 0.05. Cross-correlation across age of age-specific rates was 0.95. Cross-correlation across sexes of age-specific rates was 0.85. 

Fertility

Scales for error increments were specified so they depended on forecast year but not on age. 
Initial values for the scales were estimated, for each country, from the data in 1990-2000, by calculating the standard deviation of first differences of log(TFR). 

The eventual value for the scales was obtained from long data series for Denmark, Finland, Iceland, the Netherlands, and Sweden. This value is 0.06 for the total fertility rate. Initial values were connected to the eventual values linearly. 

Empirical estimates based on long data series of the six countries showed that the log(TFR) essentially behaved like a process of independent increments (Random Walk), so the autocorrelation of error increments (κ) was set to 0.0. The cross-correlation across age was 0.95.
Net Migration

Uncertainty in net-migration was specified in terms of total net migration. 

Scales were determined by connecting an estimate of past variability to a judgmentally chosen ultimate value. For countries relying on population registers as the source of population data (Denmark, Finland, Iceland, Netherlands, Norway and Sweden) the uncertainty of net migration was set to zero for jump-off year t = 2003. 

Autocorrelation of error increments varied by country. High autocorrelations (> 0.4) were found for Norway, Sweden, and Switzerland. But Belgium, Denmark, France, Greece, Iceland, Portugal, and the UK had low autocorrelations (< 0.2).

Cross-correlation in net migration error between males and females, each year, was assumed to be 0.9. 

A schedule of empirically estimated gross migration levels by age and sex was estimated based on data from Denmark (1998-2002), Norway (2000, 2002) and Sweden (1998-2002). It was used as a multiplier to derive the proportional level of uncertainty by age and sex. Thus, the cross-correlation across age was 1.0. 
Cross correlation across countries
The specification given above was used for stochastic population forecasts for each of the 18 countries. However, a stochastic forecast for the whole region (or any aggregate of the countries) requires that one specify how fertility rates are correlated across countries, and similarly for mortality and migration. Empirical cross correlations were estimated from residuals of fitted time series models for total fertility, life expectancy, and net migration in each country, resulting in three 18x18 matrices of correlation coefficients. These three matrices were summarized using an eigenvalue analysis, as follows. For net migration, three groups of countries were distinguished: German speaking countries, Mediterranean countries, and the rest, which resulted in a 3x3 matrix with three within-group correlations and six cross-group correlations. Fertility dealt with two groups (Mediterranean countries and the rest), each with its own correlation and in addition one cross-correlation; mortality dealt with two groups, too (Spain & Portugal versus the rest). Simulations were carried out using a random number generator. One obtains the specified correlations across (groups of) countries by a judicious choice of the seeds for the random numbers. See Alho Int.J.Forec. 24(2008) 343-353. [image: image1][image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15]
� ”relative error”, because a one per cent change in X implies a one per cent change in R.





