Stochastic Population Forecasting – 
QMSS2 Summer School Leeds 2 July 2009  
Nico Keilman
Lecture notes: ARIMA time series models (a quick rehearsal)
Recommended reading: 
Section 7.2.1 of Alho & Spencer (2005) “Statistical Demography and Forecasting” Springer, or standard textbooks such as Chatfield (1996) “The analysis of time series” Chapman & Hall, or Harvey (1989) “Forecasting, structural time series models and the Kalman filter” Cambridge University Press.

Generalities
ARIMA time series models are a class of very general stochastic time series models. One attractive feature of ARIMA models and other stochastic time series models (f. ex. GARCH models; see below) is that the stochastic nature of the observations is made explicit. Deterministic time series models do not have this property. 
Hence an important feature of ARIMA models is that they produce both point predictions and prediction intervals. Deterministic models only give us point predictions.
Let …, Y-1, Y0, Y1, Y2, … be a doubly infinitive time series of random variables (r.v.’s). Shorthand notation: stochastic process {Yt}. Corresponding observed values of the r.v.’s are the series of observations {yt} =  …, y-1, y0, y1, y2, …. One such series of observations is called a sample path of the process {Yt}.

Let    …, ε-1, ε0, ε1, ε2, ….be a sequence of independent identically distributed (iid) r.v.’s with zero expectation E(εt) = 0 and time-constant variance Var(εt) =
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. The process {εt} is called a white noise process.
Assume Yt = ψ0εt + ψ1εt-1 + ψ2εt-2 + …, 






(*)
where ψ0 = 1, and the series of absolute values of the coefficients ψj converges.
We note that E(Yt) = 0 for every time t, and Var(Yt) = 
[image: image2.wmf]22

0

j

j

e

sy

¥

=

å

: the variance of Yt is finite. More generally, we have that Cov(Yt,Yt+k) =
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, (k≥0) for every time t.
The expected value of Yt does not change over time. Its covariance depends on k, but not on t. Then, the process {Yt} is called stationary.
Define the autocovariance function of Yt by γk = Cov(Yt,Yt+k). Then the autocorrelation function of Yt is γk/γ0 = ρk , k = 0, 1, 2, …
The autocovariance is estimated by gk =
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, t = 1, 2, …, n-k, where 
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. The autocorrelation is estimated by gk/g0 = rk. 
Autocorrelation is a useful tool in the identification of a linear model of the type (*) above. However, the standard error of the first autocorrelation r1 is approximately 1/√n. This is why we need at least 50-100 observations for precise estimates of the autocorrelations.  
ARIMA models

1. MA(q) Moving average process of order q.


Yt = εt + ψ1εt-1 + ψ2εt-2 + … + ψqεt-q, ψq ≠ 0.


MA(1): Yt = εt + ψ1εt-1 = εt - θεt-1, with θ = - ψ1

Var(Yt) =
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, ρk = 0 for k≠1 and ρ1 = - θ/(1+ θ2).

MA(2) : Yt = εt – θ1εt-1 – θ2εt-2

MA(0) : Yt = εt white noise

MA models are used to model slowly swinging patterns / long cycles. Alternatively, they can be used to smooth irregularities.
2. AR(p) Autoregressive process of order p

Yt = φ1Yt-1 + φ2Yt-2 + … + φpYt-p + εt, φp ≠ 0.
Define the backshift (lag) operator B such that BYt = Yt-1, B2Yt = Yt-2, etc.
Define the polynomial backshift operator 


Φ(B) = 1 - φ1B  - φ2B2 + … + φpBp.
Then the AR(p) process can be written as 

Φ(B)Yt = εt.

To guarantee that such a process is stationary with finite variance, we need that the roots of the polynomial equation Φ(B) = 0 are strictly >1 in the absolute sense.

Example for AR(1): 


Condition 1 - φB = 0 gives B = 1/φ, hence |1/φ|>1 implies |φ|<1.

Thus: An AR(1) process Yt = φYt-1 + εt, is stationary when |φ| < 1.

By using the recursion Yt = φYt-1 + εt we see that Yt = εt + φεt-1 + φ2Yt-2.
After n steps we find Yt = εt + φεt-1 + φ2εt-2 + … + φnεt-n + φn+1Yt-n-1.

The last term vanishes for large n. Thus, comparing with expression (*) above we see that

ψj = φj for every j. Also, (for large n) Var(Yt) =
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, Cov(Yt,Yt+k) =
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 and the autocorrelation ρk = φk for every k.
Autoregressive models are useful when the data are erratic, and display high frequency cycles. Cf an AR(1) process with φ equal to -0.9, which jumps up and down.
 AR(1): the current value of the process is correlated with all previous values.

MA(1): autocorrelation is zero after one lag already.

An AR(1) process that has φ equal to 1 is called a random walk (RW). It can be written as 

Yt = εt + εt-1 + εt-2 + … + εt-n + Yt-n-1.

When the process starts at time t = 0, with an observed jump-off value Y0 = y0, we write 

Yt = εt + εt-1 + εt-2 + … + ε1 + y0.
Thus the expected value of the process at time t is y0, and the variance equals Var(Yt) =
[image: image9.wmf]2

t

e

s

. The variance of a random walk process increases linearly with time. The process is not stationary, because Cov(Yt,Yt+k) depends on t.
The process is called a random walk, because the first differences (or increments) Yt-Yt-1 = εt form an independent sequence. A slightly more general model is the Random Walk with Drift model Yt-Yt-1 = μ + εt. The drift μ can be deterministic or random. In the latter case, 

Var(Yt) =
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 the variance of the random drift.
3. ARMA(p,q) combines AR(p) and MA(q)

Yt – φ1Yt-1 – φ2Yt-2 – … – φpYt-p = εt – θ1εt-1 – … - θqεt-q
4. ARIMA(p,d,q)

A process Yt is said to be ARIMA(p,d,q) if its d-fold difference is ARMA(p,q).


ΔYt = Yt – Yt-1

Δ2Yt = Δ(ΔYt) = Yt – 2Yt-1 + Yt-2

etc.

In some cases, one includes a constant in the AR(p) model or in the RW model. Examples:

Yt = C + φYt-1 + εt (AR(1) with constant) and Yt = K + Yt-1 + εt (Random Walk with drift).

In practice one attempts to fit an ARIMA model to time series of observations using small values of p and q, rarely more than 3. The empirical autocorrelation function plays an important role in identifying an appropriate model. When the autocorrelation function gradually dies out after, say, ten lags, this suggests that the data are stationary. But an autocorrelation function that does not die out at all, or very slowly, may be caused by nonstationary data. Here one may difference the data (d=1) before fitting an ARMA(p,q) model. Standard tests for residual homoscedasticity, i.e. constant residual variance, should be applied before stationarity is accepted. One should also test for normality and independence of the residuals.
GARCH models

Much of ARIMA experience is based upon (assumed) homoscedasticity. In demographic applications, we sometimes note decreasing volatility in the time series, for instance as a result of improved measurement (and hence less impact of measurement errors). A class of models that goes beyond ARIMA is the one commonly known as GARCH models (Generalized Autoregressive Conditional Heteroscedasticity). The idea is to combine an ARIMA type of model for the process with a separate time series model for the residual variance, in which one assumes that the variance itself is an autoregressive process. 
One example is the following model:

Yt = C + φYt-1 + vt
vt = ψvt-1 + εt
εt = (√ht)et
ht = ω + α(εt-1)2
with et ~ N(0,1), ω > 0 and α > 0.
This is the so-called AR(1)-ARCH(1) model: “AR(1)” applies to the process vt, “CH(1)” applies to the variance of εt , while the main process Yt is autoregressive, too (of order one, and including a constant). [image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19][image: image20][image: image21][image: image22][image: image23][image: image24][image: image25][image: image26]
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