
Some Geographical Applications of
Genetic Programming on the Cray T3D

Supercomputer

I. Turton, S. Openshaw and G. Diplock

School of Geography, University of Leeds, Leeds, UK

email: ian@geog.leeds.ac.uk, stan@geog.leeds.ac.uk, gary@geog.leeds.ac.uk

April 15, 1996

Abstract

The paper describes some geographical applications of a parallel GP code
which is run on a Cray T3D 512 processor supercomputer to create new
types of well performing mathematical models. A series of results are de-
scribed which allude to the potential power of the method for which there
are many practical applications in spatial data rich environments where
there are no suitable existing models and no soundly based theoretical
framework on which to base them.

1 Introduction

The Geographical Information Systems (GIS) revolution together with the com-

puterisation of management and administrative systems has produced large
amounts of geographically referenced information covering many aspects of
modern life. The challenge now is how best to use these databases to cre-
ate new knowledge in areas where current theoretical understanding is weak,
how to develop or discover new process models of the behaviour of the human
systems that the databases re
ect and how to invent new and more appropriate
exploratory analysis systems. This paper deals with the task of developing new
process models of geographical systems able to cope with the complex proper-
ties of spatial phenomena. This task is becoming increasingly urgent because
of the di�culties of building geographical models by more traditional methods.
Additionally, many of the existing models are old and predate the spatial data
explosion that has occurred since the late 1980s.

Traditionally, mathematical models are speci�ed on the basis of good or
strong theoretical knowledge but in many social sciences the available theories
are suspect and at best poor. Additionally, the geographical systems of interest
are usually highly complex, non-linear, probably chaotic and currently are not
fully or properly understood due to the immense complexity of the human and
environmental systems that are involved. One way forward is to use arti�cial
neural networks and fuzzy logic modelling as universal approximators in the
hope that viable computer models can be obtained by these essentially black box
methods ; see Openshaw (1992, 1996). These inductive approaches use machine
learning techniques to create equation free representations that `learn' how to

1

map a set of inputs to one or more outputs and in the process provide good �ts
to observed data. However, these methods are far removed from the traditional
equation based mathematical model building activities that geographers and the
other social scientists have used.

The paper explores an alternative model building approach based on the
application of Genetic Programming methods run on a Cray T3D with 512
processors. This has the advantage of retaining the algebraic symbolism of
the traditional approach whilst removing the total dependency of the model
design and model discovery process on the skills of the human being. Instead
high performance computing is used to build new computer models using what
might be termed a generic type of model breeding machine. Section 2 outlines
the design of model breeders whilst section 3 discusses their implementation
on the Cray T3D parallel supercomputer. The results of some of the early
applications are presented in Section 4.

2 Early Model Breeding Machines

The idea of building models by computer is not new. For over 30 years certain
classes of linear statistical models have been created by examining all permuta-
tions of the predictor variables; for instance, if there are M predictors there
are 2M�1 possible linear regression models than can be built, explored, and the
best one identi�ed. There is no reason why a similar strategy cannot be used to
build mathematical models except once the model form is no longer restricted
to being linear the number of possible permutations becomes far too large to
examine in an exhaustive manner. There are also other problems in that the
parameters now have to be estimated using a non-linear optimisation proced-
ure and this may well involve a three or four orders of magnitude increase in
compute times for a single model.

The success of computer automated model design now critically depends on
developing an e�cient search process. For instance, how can you be reasonably
con�dent that by creating and evaluating 104 models you have found the best
or near best models from a search space that may well contain more possible
model equations? Equally even if there exists an old model how can you be
reasonably sure that this model is the best (or amongst the best) model that
exists. One approach is to generate and evaluate as many randomly generated
model equations as possible in a �xed period of compute time; see Openshaw
(1986). This model crunching strategy would at least allow current convention-
ally produced models to be viewed in terms of a broader context. However,
whilst surprisingly good levels of performance can often be achieved a much
better approach is to base the model generation process on some kind of intelli-
gent search or optimisation process. Early attempts involved the use of focused
Monte Carlo search methods and simulated annealing (Openshaw, 1988).

It soon became apparent that it would be in principle far better to use a
genetic algorithm to drive this model search process. This is investigated in
Openshaw (1988) who developed what was termed an Automated Modelling

System (AMS). A basic genetic algorithm (BA) based on Holland (1976) was
used to breed simple mathematical equation based models. The entire process
was powered by various Cray IS and XMP supercomputers in the mid 1980's.
These machine generated equation based models were evaluated in terms of their
ability to �t a dataset. The problems were two-fold: (1) insu�ciently powerful
supercomputers and (2) di�culties in representing models as bit strings.

The basic idea is still relevant and it makes much sense to regard many
model design problems as a search problem. In many modelling applications it
is quite apparent that the available model pieces (variables, parameters, unary
mathematical functions, binary operators, and rules of arithmetic equations) can
be combined in many di�erent ways to form an immense universe containing
all possible model equations that could be built. In the original research the
principal problem was how best to represent symbolic equations based on the
range of available model pieces by a �xed length bit string that would never-
theless allow the GA maximum freedom to create and search the universe of all
potentially possible model equations for good performing models. Two di�erent
representational schemes were used. The �rst assumed a very simple structure
as shown in Figure 1. Note that each equation could have a number of unknown
parameters and these were estimated using a non-linear least squares proced-
ure which was embedded in the GA. However, the basic Darwinian, rather
than Lamarckian, philosophy was retained and the optimal parameters were
not stored as part of the bit string but merely used in computing the �tness
function.

A more complex alternative coding scheme was developed whereby the bit
string was decoded to form a reverse polish expression of the model equation.
This was subsequently used in a commercial version developed from AMS sys-
tem called OMIGA (Barrow 1993) . Figure 2 outlines this model representation.
A model consists of a number of these genes. The genes are sorted by their status
(providing position independence) and then used to create a model in a reverse
polish form. The model equation that emerges is the longest complete equation
that satis�es the reverse polish logic implicit in the ordering of the model pieces.
The problem is that this type of implementation is hard for the GA to handle,
due to the high probability of redundancy and unused bits, its variable length
and its self de�ning nature. However, it does work, although there is a feeling
that improved results might be obtainable if a better way of representing the
problem could be found.

3 Genetic Programming based Model Breeders

3.1 Serial GP

In this paper we attempt to improve on AMS by using the newer technique of
genetic programming (Koza, 1992). Figure 3 outlines the basic structure of a
Genetic Programming approach. GP is basically a GA that applies modi�ed
genetic operators not to bit strings but directly to the symbolic equations. This
method has the outstanding advantage that the problem representation is much

select variable

select function
from a list
and apply

multiply by
unknown

parameter to
b e estimated

select function
from a list
and apply

binary operator
connecting sections

of equation

-

6

select variable

select function
from a list
and apply

multiply by
unknown

parameter to
be estimated

select function
from a list
and apply

-
binary operator

connecting sections
of equation

Figure 1: A simple model representation scheme

type2 bits

0 unary operator follows
1 binary operator follows
2 variable follows
3 parameter follows

status8 bits used to sort genes

value20 bits
could be integer variable
or parameter
or unary or binary
function depending on type

Figure 2: A more complex model representation scheme

more direct. There is no need for a bit string that has to be decoded to become
a model equation. Instead the basic genetic operators of crossover and mutation
are applied directly to the symbolic equations that explicitly represent the model.
The trick is to ensure that these symbolic equations are manipulated in such a

evaluate population

Select members of population to breed
based on fitness

repeat until all population replaced

evaluate offspring

apply cross over to selected parents

Randomly construct population
of equations

repeat for required number of generations

Figure 3: The genetic programming algorithm

way that valid models are always produced. This greatly simpli�es the search
task and should in principle yield a much more e�cient model breeding machine.
Koza (1992) based his GP on LISP S expressions (which he terms programs)
and this is the key to understanding the tremedous
exibility provided by GP
in an automated modelling context. Figure 4 illustrates this process using
crossover on a simple S expression.

The genetic programming was carried out using two approaches, one a tra-
ditional method based on LISP S-expressions (Koza, 1992) and the second used
a stack based representation that seemed to o�er some bene�ts (Perkis, 1994).
Both programs were written in standard FORTRAN 77 for convenience, since
this allowed implementation on various high performance computer hardware.

A FORTRAN implementation may seem a little unusual but it is very

+

V1 V3

/

*

 V2 V1

-

V2 V3

/

*

 V2 V1

Child 2: (/(-(V2)(V3))(*(V2)(V1))

Parent 2: (/(+(V1)(V3))(*(V2)(V1)))

V1 +

V1 V3

*

V1 -

V2 V3

*

Child 1: (*(V1)(+(V1)(V3))

Parent 1: (*(V1)(-(V2)(V3))

Figure 4: Example of crossover on S expressions

straightforward. The LISP equations are handled as character strings which can
only be crossed over at certain positions which generate well formed substrings,
thereby completely emulating the LISP tree structure syntax. The equations
contained in these character strings are then compiled into an e�cient form
for ease and e�ciency of implementation. In this case the model is decom-
posed into a serial set of vector operations designed to maximise computational
performance on large databases.

Figure 5 illustrates this process. An S expression in pre�x form can be
viewed as an in�x expression. For ease of computation it is compiled into a
quadruple structure. Note that here each of the operators work on vectors of data
items; for example, t1=v2+v3 is actually implemented as t1(i)=v2(i)+v3(i)
i=1.... N; where N is the number of spatial zones or points. The next step is to
tidy up this code to remove redundant expressions, to detect constants, and to
apply standard arithmetic optimisation procedures (see Bergmann, 1994). This
is important because the success of this GP approach, crudely put, depends on
how million models can be evaluated per hour! The GP can be parallelised
in various ways. The simplest is to exploit the vectorisation in the quadruple
structure.

t1 = v2 * v3

y = v1 - t1

v1 - v2 * v3

(-(v1)(*(v2)(v3))

Vector operations

Prefix expression: S expression

Infix expression

Figure 5: In�x equation, S expression and psuedo vector code

3.2 Parallel GP

The code was initially run on a Cray Y-MP and a Fujitsu VPX1200 vector su-
percomputer but whilst good levels of vector performance were obtained, it was
quite clear that far more compute power was needed. It was subsequently ported
onto the Cray T3D 512 node parallel supercomputer at Edinburgh University.
The GP algorithm is naturally parallel because each member of the population
of equations can be evaluated concurrently, see Figure 3. This requires that the
population size is some integer multiple of the number of available processors.
The initial code was parallelised in a data parallel form using CRAFT. The
serial GP code could be parallelised at the vector loop level (but there was
not much work here for a powerful highly parallel machine) or at the string
evaluation (model level). The latter is best since there is considerable compu-
tation going on here with a non-linear optimiser being run to estimate values
for the unknown parameters. Unfortunately, the compute times for each model
equation are highly variable as it is a function of model complexity, the num-
ber of parameters to be estimated, and the nature of the mathematical function
pieces used (e.g. a log takes much longer to compute than a multiply). This

unevenness results in a large amount of idle processor time due to poor load
balancing. It was obvious that a di�erent form of parallel GP was needed if
further progress was to be made.

It is necessary to develop a version of GP that uses what might be termed
an asynchronous GP rather than the standard synchronous one; see Figure 6.
This would allow a Message Passing (MPI) version to be developed that would
ensure high levels of load balancing. The principal changes made to suit MPI
are twofold: (1) the need to have a population size greater than the available
number of processors being used (this is not a problem given the current trend
towards highly (rather than massively) parallel systems) and the need for lar-
ger population sizes to ensure GP e�ciency; and (2) the population updating
needs to occurs asynchronously whereas in the serial GP it would be done syn-
chronously when the complete population of equations had all been evaluated
and their �tness ascertained. With this asynchronous approach almost perfect
load balancing is achieved since as soon as a processor has �nished evaluating
an equation it is given another to work on using the latest �tness information

available at the time. The task farm form of message passing parallel program-
ming is very e�cient at dealing with uneven computational tasks provided the
individual tasks take more time than the communication overheads. In other
words, the parallelism has to be relatively coarsely grained, which it certainly
is in this modelling application.

3.3 Modi�ed parallel GP

Other changes to the standard Koza (1992) form of GP are also necessary. A
major departure was the replacement of the ephemeral constant by a parameter,
the value of which is optimised using an embedded non-linear parameter estim-
ation procedure. This increased execution times by a factor of between 100

evaluate offspring in parallel evaluate offspring in parallel

Select members of population to breed

based on fitness

apply cross over to selected parents

Randomly construct population
of equations

place into population

repeat until required number of

individuals have been evaluated

evaluate population in parallel evaluate population in parallel

Figure 6: The parallel genetic programming algorithm

and 1000 times but it allowed the GP to concentrate on �nding a good equa-
tion instead of also having to �nd optimal parameter values. It seemed quite
unreasonable to expect the GP to do everything! This is also useful because it
avoids a potentially good model being rejected because it has poor parameter
values. However, the need to use a non-linear optimiser causes a number of
additional di�culties in particular: (1) a risk of �nding suboptimal solutions
because of any underlying assumptions of continuously di�erentiable functions
and parameter spaces need not apply; (2) arithmetic problems due to over-

ows, under
ows, library exceptions and NaNs which can easily happen if you
assemble a random equation with a divide by zero or a negative log function
argument, the GP has to learn to avoid models with these problems implicit in
them as part of the model building task rather than be presented with arti�cially
protected versions of the functions; and (3) problems of computational e�ciency
since the non- linear optimiser used numerical derivatives which means that the
computer code used to represent the equation has to be very e�cient, since
it is not unusual to perform 1000 or more equation evaluations with di�erent
parameter values, for datasets containing several thousand cases every time a
new model is being evaluated. The non-linear optimisation used is based on
a hybrid simulated evolution and quasi- Newton method. It is very straight-
forward with the simulated evolution method of Schwefel (1995) being used to
provide good starting values for the quasi-Newton optimiser to �ne tune. Both
were hardened to handle arithmetic problems. This permits the parameter and
GP optimisation process to continue without propagating erroneous results.

A �nal consideration is the need to optimise performance levels. Careful
tuning of the code on a single processor resulted in a dramatic speed-up of about
140 times on a sample of benchmark equations. Most of the improvements came
from the use of vector versions of the standard mathematical functions, use of
BLAS routines wherever possible, and loop unrolling.

4 A Spatial Interaction Modelling Case Study

4.1 Data and model Pieces

The spatial interaction model is widely used to describe and predict
ows of
people, money, goods, migrants, etc. from a set of geographically distributed
origins to a set of destinations. The modern form of these mathematical models
was created by Wilson (1971) over 25 years ago and, from a broader historical
perspective, their structure has changed greatly since their invention 150 years
ago. The task of creating genuinely new and totally di�erent models of spatial
interaction has proven to be hard and there has been little signi�cant progress
since the 1970s.

The models used here are made up of the set of terminals as shown in
Table 1. This re
ects a desire to model spatial interaction data, such as journey
to work
ows between a set of origin and destination zones. The model pieces
include those typically found in spatial interaction models so that the GP could
re-discover the conventional model if relevant. The variables used are shown in

Table 1, along with the functions and operators that are also available to the GP
runs. Most are self- explanatory; the competing destinations term is de�ned as
the sum of competing destinations divided by their distance from an origin. The
intervening opportunity term is expressed as a count of intervening destinations
between each trip-pair. The data consists of a set of car sales for one of the
Standard Metropolitan Statistical Areas of Seattle, in the United States, with
86 census tracts and 35 car dealers. The travel cost is measured as the drive
time in minutes.

Table 1: Spatial interaction model pieces

Terminals
O Origin size
D Destination size
C Travel cost
X Intervening opportunities term
Z Competing destinations term

Operators
+;�; �; =; ��

Functions
sqrt, log, exp

4.2 GP runs

For operational convenience on the Cray T3D the parameters for the model
breeding varied according to the size of the job being executed. When 128
processors were used, the populations size was set at 2000, with the number of
generations set at 100. For smaller runs, such as using 64 processors, the size of
the task was reduced accordingly, for example evaluating 50 generations of 2000
population members, or 100 generations of 1000 population members. Several
runs of each were undertaken and the best results recorded.

4.3 Results

Table 2 illustrates that the GP bred models yield a small, though improved
level of performance, again measured by the sum of squares error function,
which is encouraging considering the experimental nature of the exercise. The
models are also quite varied in their form, which is a re
ection of not only
di�erences between the number of potential model pieces, but also that the
spatial interaction data exhibits more complex, non-linear relationships.

As a consequence, the interpretability of the GP results is problematic, with
complex models being generated that are not readily understood. The models
do not provide quick indicators of the stronger relationships within the data,
and need a signi�cant amount of simpli�cation before they could be written in

Table 2: Spatial interaction model breeding results

Conventional models Error

T = O:D:C� 9.13
T = O:D: exp(�:C) 9.21

T = O:D: exp(�:
p
C) 9.10

T = O:D: exp(�: log(C)) 9.14
T = O:D: exp(�:X + �:C) 9.17
T = O:D:Z� exp(�:C) 9.08

GP Models Error

T =
h�

O
6:01Z�1:21D�3:97

�
+
�

D
�7:52O�9:36

�i
:71; 44C�0:77 8.06

T = 11:58
�
D:C
Z

�
�1:13

:
h
13:41D+ O:D1:14

C0:59 + O�D
C0:81

i
+O:C0:63+ 0:38 7.93

T = Z�0:8
h�

D
(O+2C)4:34

+ O � logD
�
:C1:05

i

�
�
C�0:72:

�
O:D
C0:04 +

X�D
1:22

��
8.05

the form they possess in Table 2. These results suggest that a more rigorous
investigation of the potential of breeding spatial interaction models over a varied
number and type of data sets is necessary if the full potential of the method is
to be realised.

5 Subglacial Water System Case Study

5.1 Data and Model Pieces

Our understanding of the basal hydraulic system of glaciers and ice masses has
traditionally been developed from theoretical models based on our physical un-
derstanding of the basal system (e.g., �lm
ow, channelised
ow, linked cavities,
canals) with rather few observations allowing direct veri�cation of model valid-
ity. With the advent of hot-water drilling technology it has become possible
to densely instrument the glacier bed; as a result while the data sets that are
available are still comparatively small it is clear that we are rapidly moving
from an age of data sparsity to data richness.

During the summer of 1992 the bed of Trapridge Glacier, Yukon Territory
was densely instrumented with sensors to measure hydrological parameters in-
cluding pressure transducers which included �ve installed approximately trans-
verse to glacier
ow and approximately 5m apart. Two of these sensors were
installed in bore-holes that connected to the basal water system of the glacier,
and as a result these sensors were dubbed C1 and C2 (Murray and Clarke,
1995). Two other sensors were installed into bore-holes that did not drain on
reaching the glacier bed, and were therefore assumed to reach unconnected re-
gions of the glacier bed; these sensors were dubbed U1 and U2 respectively.
The �fth sensor appeared to be installed into a region of the bed that altern-

ated between being in the connected and unconnected regions and so became
dubbed A1. The pressures measured by these sensors have been described in
detail by Murray and Clarke (1995). Important features of the data are (1)
both the connected sensors (C1 and C2) and unconnected sensors (U1 and U2)
show a diurnal response that we assume is forced by surface melt variations; (2)
the connected sensors are out-of-phase with the unconnected sensors { at times
when the pressure is high in the connected system it is low in the unconnected
system, and vice versa; (3) the alternating sensor (A1) shows a semi-diurnal re-
sponse such that when the pressure in the connected system is high the pressure
measured at the alternating sensor is high, however when the pressure at the
unconnected sensor is high the pressure measured by the alternating sensor is
also high. These responses are clear during the summer 1992 data and continue
to be displayed, at least during the early part of the winter period when the
water system is presumably closing due to a lack of surface water input.

Taking the pressure recorded by sensor C1 in the connected system as the
forcing Murray and Clarke (1995) derive a series of models to predict the wa-
ter pressure within each of the three systems based on low-order di�erential
equations. Using the �nal forms of these models they then describe some of the
processes that they feel are important in driving the form of these models.

The models used here are made up from the set of terminals shown in table 3.
The pressure record from sensor C1 is the only input variable for each model
for compariability to the black box models of Murray and Clarke (1995).

Table 3: Subglacial system model peices

Terminals

C1 Pressure record

Operators
+;�; �; =

Functions
sqrt,log,exp,sin,cos

5.2 GP runs

For operational convenience on the Cray T3D the parameters for the model
breeding varied according to the size of the job being executed. When 128
processors were used, the populations size was set at 1000, with the number of
generations set at 100. For smaller runs, such as using 64 processors, the size of
the task was reduced accordingly, for example evaluating 50 generations of 1000
population members, or 100 generations of 500 population members. Several
runs of each were undertaken and the best results recorded.

5.3 Results

Table 4 shows the results obtained by GP compared to the blackbox models
derived by Murray and Clarke (1995).

Table 4: Subglacial Modeling Results

Connected System

Black Box R(t) = 1:01F (t)� 4:96 0.2m
GP R(t) = F (t)� 3:75 0.3m

Unconnected System

Black Box a2
d2R
dt2

+ dR
dt
� a0 [R

? �R(t)]

= b1 exp[D0F (t)]
dF
dt

2.1m

GP R(t) = 0:86
e0:04f(t)

� 0:05:(�1384:5� F (t)) 3.4m

Alternating System

Black Box R(t) = F (tsi) + c1 [F (t)� F (tsi)]

or a2
d2R
dt2

+ dR
dt
� a0 [R

? �R(t)] =�
b1 exp[D0F (t)]

dF
dt

+ b0 [F (t)� R(t)]
	

6.1m
GP R(t) = 3F (t) + 18000

F (t)
� 242423

F2(t)
� 374 3.1m

Again the GP results produce a better preformance and in this case while
complex can be considered no worse than the black box models. It should also
be noted that the black box model for the alternating system contains hardwired
switches between the two states where as the GP model has no knowledge added.

6 Conclusions

From a GP perspective there is a feeling that the best achievable results have
still not being produced. Whether this re
ects a lack of su�cient compute power
to investigate larger population sizes or a need for a more e�cient parameter
estimation procedure, problems with the GP itself are a matter for further in-
vestigation and debate. Indeed debugging a GP is actually quite hard because
the GP will cleverly accommodate all manner of non-fatal errors in the code.
Indeed a major research e�ort is probably needed to determine good ways of
validating GP software. Nevertheless, the paper clearly provides a glimpse of
the potential of GP as a generic tool for creating new models of complex geo-
graphical systems. In principle it would appear to o�er the ultimate technology
for implementing an inductive approach to knowledge creation from data. At
a time when there is a vast explosion in all kinds of information it is useful to
know that GP provides the basis for new sets of tools that are able, in principle,
to convert at least some of these data riches into new knowledge. Whether this
approach works well depends on the speed of the available high performance
computers, the power of the GP method itself, and the subsequent skills of the

modeller in interpreting the equations that are created and declared optimal.

References

Barrow, D. (1993) The use and application of genetic algorithms, Journal of
Targeting, Measurement and Analyses for Marketing 2: 30-41.
Goldberg, D E. (1989) Genetic Algorithms in Search, Optimisation and Ma-

chine Learning, Addison Wesley, Reading Mass.
Holland, J. (1975) Adaptation in Natural and Arti�cial Systems, the University
of Michigan Press, Ann Arbor.
Koza, J. (1992) Genetic Programming: on the programming of computers by

means of natural selection, MIT Press, Cambridge, Mass.
Koza, J. (1994) Genetic Programming II: Automatic Discovery of Reusable pro-
grams, MIT Press, Cambridge, Mass.
Murray, T. and Clarke, G.K.C. 1995. Black-box modeling of the subglacial
water system. Journal of Geophysical Research, 100(B7), 10231{10245.
Openshaw, S. (1976) An empirical study of some spatial interaction models,
Environment and Planning A 8: 23-41.
Openshaw, S (1986) Modelling relevancy, Environment and Planning A 18:
143-147
Openshaw, S. (1988) Building an automated modelling system to explore a uni-
verse of spatial interaction models, Geographical Analysis 20: 31-46.
Openshaw, S. (1992) Some suggestions concerning the development of arti�cial
intelligence tools for spatial modelling and analysis in GIS, Annals of Regional
Science 20: 35-51
Openshaw, S. (1996) Fuzzy Logic as a New Scienti�c Paradigm for doing Geo-
graphy, Environment and Planning A (forthcoming).
Perkis, T. (1994) Stack-based genetic programming, IEEE World Congress on

Computational Intelligence

Schwefel, H.P. (1995) Evolution and optimum seeking, Wiley, New York
Wilson, A.G. (1971) A family of spatial interaction models and associated de-
velopments, Environment and Planning A 3: 1-32

