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Abstract

Fundamental to the use of statistical graphics is the assumption that any statistical effect implied
by a graphic can be reliably perceived. This is a particular concern for geovisualization since
unanticipated artefacts are often introduced when presenting data within their spatial context.
Techniques for supporting inferences made with graphics, specifically graphical line-up tests,
have recently been proposed but not widely used, whilst within Information Visualization and
Human Computer Interaction, a new class of experimental research aims to observe and model
human perception of statistical properties implied by graphics. One such study found that the
precision with which spatial autocorrelation structure is perceived in Choropleth maps varies as
a function of the intensity of autocorrelation structure under investigation and the geometric
irregularity of spatial units that comprise regions. These experimental findings were used to
make claims around the circumstances under which Choropleth maps can be reliably used to
study spatial structure. Such studies are prescient at a moment when alternative mechanisms
for communicating statistical effect, for example using graphics, are being proposed as a means
of broadening scientific communication and statistical literacy. We hope that exposing this work
to a community expert in spatial analysis will lead to a lively discussion at Geocomp 2017.
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1 Graphical inference and the challenge of (geo)visualization

If statistical graphics are to be used in data analysis and reporting, then there needs to be some
reassurance that the statistical effect implied by a graphic can be reliably perceived. Any possible
mismatch between statistical effect and its graphical perception is a particular challenge to geovi-
sualization. Whilst maps convey information around the location and extent of phenomena that
may be difficult to imagine using non-visual techniques, they may also lead to artefacts that are
incidental to the statistical structure under investigation and that may even induce interpretation
of false structure.

Techniques for supporting graphical inference (Wickham et al., 2010) represent a means of enabling
more consistent interpretation. One such technique is the line-up protocol. The graphical line-up
can be understood as a visual equivalent to a test statistic. A plot of real data is hidden amongst
a set of decoys generated under a null hypothesis. If an impartial observer, an individual who has
not previously seen the plot, is able to correctly identify the real from the decoys, then this lends
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confidence to the initial finding – or rather, following null hypothesis significance testing, that the
observed data are not consistent with the specified null.

The example ‘map’ line-up in Figure 1 is constructed under a null hypothesis of spatial indepen-
dence, or complete spatial randomness (CSR). Such a configuration is consistent with a long-standing
concern in geography with spatial autocorrelation: the extent to which ‘near things are more related
than distant things’ (Tobler, 1970), or casually, Tobler’s First Law of Geography. When testing for
spatial autocorrelation, geographers generate statistics that describe how probable the spatial struc-
ture in an observed dataset would be if CSR were operating – following the example in Figure 1,
the probability of the observed distribution in crime rates were it drawn from a hypothesised popu-
lation in which crime were distributed independently of location. One means of creating such a test
statistic is to calculate an autocorrelation summary measure, such as Moran’s I, described in detail
elsewhere (e.g. O’Sullivan and Unwin, 2010), but which can be understood as the distance-weighted
co-variation in attribute values over space. When testing for spatial autocorrelation, Moran’s I can
be compared against a theoretical null distribution. Since the statistic is partly a function of the
geometric properties of the region under investigation – the map is also a parameter in the analy-
sis (O’Sullivan and Unwin, 2010) – a superior approach is to generate this distribution empirically,
by randomly permuting attribute values between spatial units many times and on each run calcu-
lating a value for Moran’s I. The map line-up in Figure 1 can be understood, at least procedurally,
as a patial analogue of this latter approach.

The assumption of CSR has received some criticism since if Tobler’s first law is accepted, then CSR
should never exist (O’Sullivan and Unwin, 2010). Within the more informal framework of graphical
inference, one proposition is to construct decoys in map line-up tests that assume autocorrelation
based on some sensible prior knowledge (Beecham et al., 2017): for the example in Figure 1, decoys
that contain an autocorrelation structure typically observed in crime datasets for areas of similar
population dynamics.

2. Informal observer asked to pick the real data from a 
group of decoys constructed under CSR. 

1. Analyst observes 
neighbourhood-level pattern of 

crime rates. 

3. If the real is correctly selected from the decoys, we  reject 
the null that crime distributes independently of location. 
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Figure 1: Line-up protocol as described in Wickham et al. (2010) – a line-up is a visual equivalent
to a test statistic.

2



2 Attending to perception: map line-up 6= n test statistic

Although procedurally straight-forward and conceptually appealing, line-ups is a technique that
has yet to be widely adopted. There are few case study examples of graphical line-up tests being
regularly used to guard against false interpretation. If line-up tests are to represent a genuine
technique to the extent that they might be presented in research papers, technical reports or press
releases in place of more formal statistics, then there again needs to be evidence that the statistical
effect encoded in line-ups can be reliably perceived.

Three notable studies (Rensink and Baldridge, 2010; Harrison et al., 2014; Kay and Heer, 2016) have
recently carried out large-scale experiments measuring the precision with which non-spatial correla-
tion (Pearson’s correlation coefficient) can be perceived in statistical graphics. Using an established
methodology in cognitive psychology, these studies found that the precision with which two plots
displaying varying correlation effect can be correctly judged as different varies systematically with
the intensity of effect (Rensink and Baldridge, 2010; Harrison et al., 2014) and with visualization
design (Harrison et al., 2014). Importantly, the studies demonstrate how these these differences can
be modelled: Harrison et al. (2014) and Kay and Heer (2016) estimate the precision with which
correlation structure can be distinguished in different visualization types and at different intensities
of correlation coefficient.

Beecham et al. (2017) used the same experimental procedure as these earlier studies to measure
the precision with which spatial autocorrelation, as measured by Moran’s I, can be distinguished
in Choropleth maps. Following Harrison et al. (2014), Beecham et al. (2017) varied systematically
the intensity of autocorrelation extent in visualization pairs (in this case pairs of choropleths),
but rather than testing different visualization types they varied the geometric properties of the
maps (as in Figure 2). The assumption was that with greater geometric irregularity (as measured
by variance in spatial unit area), the greater the likelihood of visual artefacts interfering with
perception. Consistent with the studies of non-spatial correlation, Beecham et al. (2017) found that
ability to distinguish two maps of different spatial autocorrelation structure varies with the amount
of baseline autocorrelation. Introducing greater irregularity into the geometry of choropleths also
impacts upon perception and in the direction anticipated – the difference in autocorrelation required
to discriminate maps is larger with greater irregularity. An important observation is that both
these factors – geometric irregularity and intensity of autocorrelation effect – influence variability
in perception.

The findings described in Beecham et al. (2017) have implications for the design of map line-up tests.
If a relationship between visual perception and intensity of statistical effect exists and can be mod-
elled, then the case for line-up tests that assume spatial autocorrelation rather than CSR becomes
more compelling. If no adjustment is made for this relationship then map line-up designs become
unduly sensitive where the phenomena being studied are very spatially autocorrelated. Equally, if
the difference in statistical effect required to perceive differences in autocorrelation increases with
geometric irregularity then line-up designs become less sensitive, and more prone to vary, in cases of
irregular regions. These two properties – intensity of statistical effect and geometric irregularity –
therefore relate to the likely power of a line-up test. In statistics power is the probability of rejecting
the null if there is a true effect of a particular stated size in the population; in a line-up, it could
be interpreted as the probability of correctly identifying the real from the decoys. Conventionally,
power depends on experimental design – on sample size, confidence level and target effect. When
constructing visual line-up tests with maps, however, Beecham et al. (2017) argue that power is
likely to vary not only with sample size, or factors specific to lineups such as the number of decoys
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presented, but with intensity of autocorrelation and with geometric irregularity.

research design

Participants: Amazon Mechanical Turk (n=360), each performs 4 staircases
Geometric irregularity: 3 geographies
Intensity of autocorrelation: 8 targets
Conditions investigated: Between-subject design 

0.2I 0.3I 0.4I 0.5I 0.6I 0.7I 0.8I 0.9I

regular grid 

regular real 

irregular real 

intensity of autocorrelation (Moran’s I)
irregularity of spatial units

test conditions
Figure 2: Conditions tested in Beecham et al. (2017).

3 Speculating on the sources of perceptual error

Whilst the model and results described in Beecham et al. (2017) may be used to make decisions on
the configuration and design of map line-up tests, an important observation is of substantial between-
participant variability in perception. One explanation is that data were collected via a large-scale
crowdsourcing platform, Amazon Mechanical Turk (AMT), rather than from a sample known to,
and experimental conditions controlled by, researchers. A counter argument to this is that Harrison
et al.’s (2014) study was conducted via the AMT platform, but the authors were able to replicate
the same findings as those published in an earlier study conducted using a more traditional, lab-
based environment (Rensink and Baldridge, 2010). The variation observed in the spatial perception
tests might instead relate to artefacts introduced into the more irregular geographies that could
not be controlled in a systematic way: for example, biases introduced through a dominant colour
effect (Klippel et al., 2011), the influence of geometric shapes or lineations that only become salient
when attribute data are added to a map, or instances of extreme proximity in spatial unit centroids,
which may have an inordinate effect on the spatial autocorrelation statistic but which are hidden
visually. Modelling these types of artefacts is problematic and remains a challenge for experimental
research.

4 Towards empirically-supported (geo)visualization

The approaches and studies discussed here represent a burgeoning class of research from within
Information Visualization and Human Computer Interaction around the interpretation of statistical
structure in graphics (Correll and Gleicher, 2014; Rensink and Baldridge, 2010; Harrison et al., 2014;
Kay and Heer, 2016; Beecham et al., 2017; Correll and Heer, 2017). This work is highly prescient
at a moment when the scientific community is demanding a New Statistics (Cumming, 2012) and
new mechanisms for communicating scientific results (McInerny et al., 2014). With the exception of
Beecham et al. (2017) and previously Klippel et al. (2011), comparatively few empirical studies have
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been published on the perception of spatial statistical structure. We hope that exposing this work
to a community expert in spatial analysis will effect a lively discussion at Geocomp 2017.
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