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Abstract

This paper explores the potential for emerging methods Machine Learning and Directed Acyclic
Graphs (DAGs) to be applied to transport modelling at the origin-destination (OD) level. OD
data is inherently spatial and is complex, due to the multitude of ways of allocating geographic
attributes to the OD pairs (e.g. buffers and intersections with geographic representations of OD
data generated using straight desire lines, shortest path algorithms or probabilistic routing). This
makes their analysis an interesting geocomputational challenge, seldom tackled by geographers.
The application of Machine Learning and DAG methods, developed in other fields, to this
geographical data holds great potential to improve the ability to infer causality in mode split
from OD data. However, there are also pitfalls to using these methods which can be black boxes,
even if the code is open source, if the analyst does not understand what they are doing with the
data. Based on the work we discuss ways to ensure new methods in the field are used wisely and
set-out next steps for our own research.
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1 Introduction

This paper aims to show the potential benefits, and the pitfalls, of machine learning algorithms
in analysing transport data. It results from a 3 month ‘T-TRIG’ (Transport Technology Research
Innovation Grant) project funded by the UK’s Department for Transport (DfT) entitled “Using
Machine Learning and Big Data to Model Car Dependency: an Exploration Using Origin-Destination
Data”.

Despite the applied title, the prime focus was methodological development: using geocomputation, in
the form of new analysis of new open geographical data, to explore a long-standing policy challenge:
how to reduce car dependency. As highlighted by the DfT, Machine Learning is relatively new in
the transport sector (Hagenauer and Helbich 2017). The research was therefore exploratory and
open-ended in its scope. Having completed the first Phase of the work (we will have completed
the project in time for the Geocomputation conference), we would like to comunicate some of the
findings from the research.
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By demonstrating previously impossible or inaccessible methods we aim to show how new techniques,
combined with new and newly open datasets, can generate a strong evidence base for transport
planning and policy. The aspiration is that the work will filter into policies, to make them data-driven,
transparent, reproducibible and encouraging of citizen science and innovation.

2 Input data

For simplicity and maximum accessibility this project uses only datasets which are open (publicly
available). There are three main input dataset types:

• Origin-destination (OD) commute data from the 2011 Census data.
• Geographically aggregated socio-demographic data from the 2011 Census.
• Geographic variables associated with each OD pair.

The Census was used as the primary input dataset because it provides so many variables relevant to
car dependency. To our knowledge, the breadth of input datasets have never been analysed together
in a single project.

The case study region used for this project was West Yorkshire. This case study was selected due
to the wide range of social and geographical environments linked to car dependency found here: it
includes rural, urban, deprived and privaledged areas.

2.1 Origin-destination data

The fundamental input dataset was a table reporting the number of people travelling, by main mode
of transport, commuting to work between Middle-Super Output Areas (MSOAs, average population:
~7,500). This is an open dataset (available online from the official WICID data portal) (dataset
WU03EW). The file was downloaded as wu03ew_v2.zip, an 11.8 MB zipfile which when unzipped
creates the file 109 MB plain text file wu03ew_v2.csv, read-in with the following command:
odall = readr::read_csv("data/wu03ew_v2.csv")

The result is a data frame the first two columns of which contain a the code for the MSOA of origin
and destination, respectively. The subsequent columns report number of people whose main mode of
travel to work was:

• work at home (no transport used)
• some form of metro
• train
• bus or coach
• taxi
• motorcycle or scooter
• drive a car or van
• passenger in car or van
• bicycle
• walk
• other
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Figure 1: A sample of work commute flows in the West Yorkshire region (left), and a sample of the
result of the code which calculates the distance between motorways (red) and flows (black), in this
case discarding all flows within a certain distance of the motorway, as an example.

We grouped together people who drive or are passengers to estimate car dependency. Further, we
filtered out flows with an origin or destination outside West-Yorkshire, resulting in 53,807 OD pairs
in the study region. This amount of data is sufficient for machine learning algorithms to work and
extract complex insights, but small enough for experimentation and fast iteration of methods.

To convert the non-geographical OD dataset into geographic data we used the function od2line()
from the stplanr R package. The result is straight lines that can be plotted on the map and about
which geographical variables, such as proximity to motorways, can be extracted.

We will hereon refer to each home-work (origin-destination) pair and its corresponding number of
commuters, in geographic form, as a flow (see Figure 1).

To this base table there are two ways to further increase the data included for modelling: the Census
provides numerous other demographic and economic measures and indicators which can be linked to
the commuter’s home MSOA (available here), and it also provides workplace data which a group of
researchers at the University of Southampton have conveniently created a classification of (by work
type, available online as well) which can be linked to the workplace MSOA.

2.2 Socio-demographic data

The geodemographic data relevant to each origin (home) MSOA which was deemed relevant and
annexed to the flows data consists of the following variables: number of people in particular age
brackets, number of people of each gender, car or van availability (including number of homes with
0,1,2,etc. cars), population density, number of economically active and inactive people, general
health (number of people with very good, fair, etc. general health), number of people per ethnicity
group, number of people by maximum qualification level, and lastly, average number of rooms,
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bedrooms and fraction of homes with central heating.

In addition to this we included the workplace zone classification which assigns each destination
MSOA (workplace) to one of 7 groups (Table 1).

Table 1: The classification of workplace zones.

Workplace zone classification Code

Retail 1
Top jobs 2
Metro suburbs 3
Suburban services 4
Manufacturing and distribution 5
Rural 6
Servants of society 7

2.3 Spatial data

In addition to this Census data we gathered and computed spatial data as well. We have obtained
the location of motorways through the OSM API, and the positions of train stations, coach stations,
and bus stops from the NAPTAN dataset. This allowed us to calculate geographical distances
between flow lines and motorways, train stations, coach stations, and bus stops. This proximity and
accessibility data is arguably vital to best understand and model car usage propensity, and has for
the first time become readily available via the OSM platform, and analysis of the type we aim to do
next should be cutting-edge data analysis.
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2.4 Overview of input data

A sample of the first 20 variables used in the input dataset for the machine learning algorithms
is provided in Table 2 (the full list can be seen in a code repository that will accompany this
paper).

Table 2: The first 20 variables in the full dataset.

Variable Description

homeMSOA MSOA code for origin (place of residence)
workMSOA MSOA code for destination (place of work)
workhome Fraction of people who work from home (don’t commute)
metro Fraction of people who use the metro, tram or light train to commute
train Fraction of people who use the train
bus Fraction of people who use the bus
taxi Fraction of people who use a taxi
motorcycle Fraction of people who use a motorcycle, scooter or moped
car Fraction of people who use a car or are passengers in a car or van
cycle Fraction of people who cycle
walk Fraction of people who walk
othertransp Fraction of people who use a form of transport not listed above
npeople Total number of people resident in the homeMSOA
16-24 Fraction of people in the age range 16-24
25-34 Fraction of people in the age range 25-34
35-49 Fraction of people in the age range 35-49
50-54 Fraction of people in the age range 50-54
65-74 Fraction of people in the age range 65-74
75 Fraction of people of age 75+
female Fraction of people who are female

3 Machine Learning

The first step in this process is that of model selection by cross-validation, and it is this procedure
which we will now describe. The first step of model selection is to choose the metric of interest,
based on which we will select the best-performing model. Given that this is a regression problem
there are multiple possible metrics: mean squared error (MSE), mean absolute error, coefficient of
determination (R2), etc. From the point of view of policy decision-making, which is our ultimate
goal, there is no clear choice of best-suited metric. We have chosen the coefficient of determination
as it seems to be the metric of interest for our Data Science contact at the Department for Transport,
but it must be noted that this metric is ill-suited for the mostly non-linear1 regression models we
consider (see for example (Spiess and Neumeyer 2010)).

Having chosen the metric of interest, we proceed to shuffle and split the data in preparation for
cross-validation. Flows are unordered data and therefore can be shuffled uniformly with no problem.

1For clarity, we are referring to non-linearity in the regression parameters, models non-linear in the covariates
(e.g. the Elastic Net model we use) are still linear by this definition.
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We shuffle the flows in the West Yorkshire dataset, and then split off half of the data for model
selection and validation, the other half is left for final model testing to estimate the generalisation
error (or parts of it may used for further model selection, e.g. parameter tuning, if needed).

We then perform 10-fold cross-validation on the validation half of the dataset. At this point we
do not perform any hyperparameter tuning and use the default parameters set in scikit-learn’s
implementation (Pedregosa et al. 2011) of these algorithms2. The regression models considered and
the result of the model selection are shown in the table below.

Table 3: 10-fold cross-validation R2 scores of the the regression
models considered. The MEAN MODEL is a model which always
predicts the mean of the response variable, and is included as a
reference point and benchmark. The RANSAC and Stochastic
Gradient Descent (SGD) regressors have clearly not converged
but we will not attempt to tune them for now.

Model R2

MLP 9.548066e-01
XGB 9.522178e-01
RandomForest 9.411053e-01
ExtraTrees 9.366043e-01
ElasticNetCV 9.268778e-01
PassiveAggressive 8.870397e-01
DecisionTrees 8.736974e-01
TheilSen 8.561763e-01
KNeighbors 8.427571e-01
RANSAC 7.766147e-01
–MEAN MODEL– 0.000000e+00
Dummy -3.752000e-04
SGD -1.211319e+23

Without engaging in extensive hyperparameter tuning on a separate dataset, we see that the Multi-
Layer Perceptron and the XGBoost regressor (Chen and Guestrin 2016) top the list with R2 ≈ 0.95.
The difference between the top-performing models is likely not significant, therefore on theoretical
grounds we will choose the XGBoost regressor as our tentative final model, as boosting is known to
be less likely to overfit (Schapire 1999), and therefore is likely to generalise best to new datasets. We
will therefore select it as a tentative final model and now proceed to perform some model validation
to ensure its predictions are sensible.

4 Model validation

For a regression task such as the one at hand, the model validation checks which can be performed
are perhaps less intuitive than the tests available for classification tests. However some basic plots

2Grid search or random search hyperparameter tuning by cross-validation could be carried out at a later date on a
separate dataset for a subset of the selected models to extract further gains in predictive performance.
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Figure 2: The residuals of the XGBoost regressor on a validation dataset.

Figure 3: The distribution and correlation of predictions and observed values.

of the model’s predictions and checks of the model’s residuals and the correlation of the model’s
predictions with observed values can and should be carried out.

The figure below shows the residuals of the XGBoost regressor on a validation dataset, showing no
obvious trend or asymmetry which would be indicative of a poorly-fit model.

We can further inspect the distribution and correlation of the predicted and observed values, as well
as a histogram of their distribution.

5 Next steps

There is one noteworthy caveat which applies to all studies using Machine Learning (and more
generally regression on observational data without Randomised Controlled Trials) to inform decision
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making: both Machine Learning approaches and standard regression approaches when carried out
appropriate can identify correlations, but evidence for these correlations is tentative and correlations
by themselves, without evidence of a causal link, are not a sound basis for decision-making or
interventions.

The patterns found are therefore a very solid first step in finding potential causal links which could
inform decision-making and policy interventions, but they must be informed by causal modelling. To
this end, in the next stage we will explore introducing causal information into the machine learning
modelling, as well as using standard causal analysis via the use of Directed Acyclic Graphs (DAGs)
to tease out which correlations may or may not be causal.

The results so far should thus be taken as tentative as they are in the process of being tested further
to guarantee as much as possible their validity and potential for informed, data-driven decision
making.
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