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Abstract

Ordinal categorical responses are commonly seen in geo-referenced survey data while spatial
statistics tools for modelling such type of outcomes are rather limited. The paper extends the
local spatial modelling framework to accommodate ordinal categorical response variables by
developing a Geographically Weighted Ordinal Regression model. The GWOR model offers a
proper statistical tool to analyse spatial data with ordinal categorical responses, allowing for
the exploration of spatially varying relationships in the model. Based on a geo-referened life
satisfaction survey data in Beijing, China, the proposed methodology is employed to explore
the socio-spatial variation of life satisfaction and how environmental quality is associated with
life satisfaction. We find that air pollution is negatively associated with life satisfaction, which
is both statistically significant and spatially varying. The economic valuation of air pollution
results show that residents are willing to pay about 2.6% of their annual income for per unit air
pollution abatement, on average.
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1 Introduction

This paper contributes to the ongoing methodological development of GWR models by proposing
a geographically weighted ordinal response regression model (GWOR) in order to properly model
spatial data sets with ordinal categorical responses. Ordinal response variables are commonly used in
social science research, especially when the focus is in relation to individual opinions and attitudes
towards events, or subjective assessment of life experiences such as satisfaction and happiness.
Detailed descriptions of the application scope of ordinal response variables in a variety of disciplines
are provided in Agresti (2010) and Greene and Hensher (2010). The motivation of developing a
GWOR model lies in our interest of exploring the socio-spatial variation of life satisfaction in Beijing,
China and examining the role of geography in how life satisfaction are linked to air pollution and
socio-economic status.
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To date, GWR models have been developed most often assuming the outcome variable under in-
vestigation distributed as a Gaussian process, with few notable exceptions in Nakaya et al. (2005)
where a geographically weighted Poisson regression model has been developed for exploring disease
outcomes following a Poisson distribution. This paper fills the gap by developing a GWOR model
for ordinal categorical response variables, offering a tool for the exploration of spatially varying
relationships between an ordinal response variable and predictor variables. Model estimation draws
upon the local likelihood approach and is implemented through iterative numerical optimisation
approaches (detailed below). The model allows for great flexibility in terms of model specification,
including different link functions (logit and probit) for the cumulative distribution of the categorical
responses and a mixed model specification (also termed as semi-parametric models in Nakaya et al.
(2005)) in which regression coefficients of some variables are spatially varying while coefficients of
other variables are kept spatially invariant.

2 A non-spatial ordinal response model

Following Agresti (2010) and Greene and Hensher (2010), we use a latent variable approach to
formulate an ordinal categorical response regression model due to its intuitive link to the linear
regression models familiar to most quantitative researchers.1 Denote Y ∗i as a latent continuous
outcome variable and xi a set of predictor variables such as income, air pollution, and others. A
linear regression model links Y ∗i to xi,

Y ∗i = xiβ + εi; ∀i ∈ N (1)

where i indexes each observation and N , the sample size. xi = [xi,1, xi,2, . . . , xi,p] is a row-vector
of predictor variable values for observation i while β is a column-vector of regression coefficients to
estimate. The mapping of the unobservable Y ∗i to the observed categorical response Yi depends on
a set of cut-off points or threshold values [α0, α1, . . . , αJ ] on the scale of Y ∗i ,

Yi = 1 if α0 < Y ∗i ≤ α1 (2)

= j if αj−1 < Y ∗i ≤ αj j = 2, . . . , J − 1

= J if αJ−1 < Y ∗i ≤ αJ

where j = 1, . . . , J indicates the category that each response falls into. Ordinal response models
focus on the cumulative probability of an observation falling in category j or below, which is
expressed as,

P (Yi ≤ j) = P (Y ∗i ≤ αj) = P (εi ≤ αj − xiβ) = F (αj − xiβ) (3)

Clearly, based on the different specifications of density functions for ε, the cumulative probability of
P (Yi ≤ j) has different forms: 1

1+e−(αj−xiβ) if a logistic density was specified for ε, and Φ(αj−xiβ) if a

Normal density was specified. The logistic specification was slighted favoured due to its simplicity in
terms of model parameter interpretation over Normal distributions (Agresti, 2010). The probability

1The cumulative link (logit or probit) function approach is another popular way to formulate the ordinal response
regression models. The two different approaches lead to the same model specification (Agresti, 2010). The latent
variable approach is predominantly used in the environmental valuation literature, so we follow this convention.

2



of Yi = j conditioning on xi is given by: F [Y ∗i ≤ αj ] − F [Y ∗i ≤ αj−1]. While the GWOR models
developed here allows for both Normal and logistic densities for ε, the interpretation is demonstrated
by using the latter.

3 Developing a geographically weighted ordinal response model

We now introduce the geographically weighted ordinal response models that allows for regression
coefficients varying across space. Following the GWR notational convention (Fotheringham et al.,
2003), let ui(ui,x, ui,y) be the geographical coordinates, describing the location, say residence ad-
dress, of observation i. Equations (1) and (2) can be rewritten as (note the model intercept term is
dropped),

Y ∗i = xiβ(ui) + εi;∀i ∈ N (4)

Yi = 1 if α0(ui) < Y ∗i ≤ α1(ui)

= j if αj−1(ui) < Y ∗i ≤ αj(ui) j = 2, . . . , J − 1

= J if αJ−1(ui) < Y ∗i ≤ αJ(ui)

Both the J − 1 cut points and the coefficient vector β to estimate are associated with the location
indicator ui, relaxing the restrictive assumption of spatially invariant regression coefficients. An
additional flexibility of the GWOR over non-spatial ordinal response model is to allow the locational
heterogeneity in how the latent variable space is divided into J categories. Following (Páez et al.,
2002; Nakaya et al., 2005; Loader, 2006), a geographically weighted local likelihood approach was
employed to estimate GWOR parameters.

3.1 Model estimation

The log-likelihood function at the fit (or focal) location i is expressed as,

l(θ(ui)) =
N∑
k=1

J∑
j=1

wikykjLog[F (αj(ui)− xkβ(ui))− F (αj−1(ui)− xkβ(ui))] (5)

where wik is the geographical weight placed on the kth observation when fitting the local regression
model at location i. A weighting function is needed to determine the rate of decrease in weights
assigned to observations when moving further away from the fit point. A commonly employed

weighting kernel is the Gaussian kernel, in which wik = e−0.5
(|ui−uk|)

D with |ui−uk| = (ui,x−uk,x)2 +
(ui,y−uk,y)2. The parameter D is the kernel bandwidth, which controls how fast the weights decline
with increasing distance from the fit or focal location. Larger bandwidth implies a slower weights
decay. Alternative kernel functions such as bi-square kernel are also widely used (Páez et al., 2002;
Fotheringham et al., 2003). A further decision is to choose between a fixed kernel approach where
bandwidth is fixed for all fit locations, and an adaptive kernel approach in which bandwidth varies
with each fit location while keeping the number of nearest observations from each fit point same
across a study area.
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Again, an iterative maximisation algorithm is needed to estimate model parameters at location i.
The maximum of each local log-likelihood function (Equation (7)) can be found by using the Newton-
Raphson approach, as illustrated in the following equation (Franses and Paap, 2001, p.119),

θm = θm−1 −H(θm−1)
−1G(θm−1) (6)

where G(θ) and H(θ) are the first-order and second-order derivatives of the local Log-likelihood
function l(θ(ui)) with respect to model parameters θ, which are also known as the gradient and
Hessian matrix of a likelihood function, respectively. Based on Equation (7), the gradient vector
can be obtained as,

G(θ(ui)) =
∂l(θ(ui))

∂θ(ui)
=

N∑
k=1

J∑
j=1

[ wikykj
P (Yk = j|xk)

∂P (Yk = j|xk)

∂θ(ui)

]
(7)

It is clear that only the conditional probability P (Yk = j|xk) is involved in deriving the gradient
vector. For notational simplicity, we denote P (Yk = j|xk) as P (Yk = j) and the first-order derivative
of the cumulative probability function F (.) as f(.). Then we have,

∂P (Yk = j)

∂θ(ui)
=

[∂P (Yk = j)

∂β(ui)
,
∂P (Yk = j)

∂α1(ui)
, . . . ,

∂P (Yk = j)

∂αJ−1(ui)

]′
(8)

= [xk(f(αj−1(ui)− xkβ(ui))− f(αj(ui)− xkβ(ui))),

0, . . . ,−f(αj−1(ui)− xkβ(ui)), f(αj(ui)− xkβ(ui)), . . . , 0]′

a (p + J − 1) column vector. The Hessian follows naturally by further obtaining the derivative of
Equation (9) with respect to θ(ui)

′.

4 Empirical analysis of life satisfaction and air pollution

4.1 Data and variables

Our analysis mainly draws on a life satisfaction survey data conducted in 2013 in Beijing, a key aim
of which was to assess the socio-spatial variation in residents’ life satisfaction. A key features of this
survey data is its records of residence addresses for each respondent. Based on this information, the
life satisfaction data have been geo-coded, which makes possible of extraction of local air pollution
levels and other locational variables for each residence.

Life satisfaction is our outcome variable measured by asking this question: Overall, how are you
satisfied with your life? The responses were quantified on a 5-point Likert scale ranging from 1
(very unsatisfied) to 5 (very satisfied). The majority (> 60 percent) of respondents were satisfied
with their lives while about 27.5 percent of respondents rated life satisfaction level as fair.

Air pollution data is compiled from the real-time air pollution monitoring data, hosted by the Beijing
Environmental Protection Bureau (BJEPB). There are 35 air pollution monitoring sites in Beijing,
producing hourly readings for various air pollutants. As the particulate matter with a diameter of
2.5µm or less (PM2.5) is of particular toxic and more strongly linked to health issues than other air
pollutants in China (Zhang et al., 2013), we use the concentration of PM2.5, measured by unit of
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µg/m3, as a proxy variable for air pollution. Following Ferreira et al. (2013), an inverse distance
weighted interpolation (IDW) approach was employed to extract the annual mean air pollution
levels in 2013 for each residence location.

4.2 Model estimation results

Our final results are based on a fixed Gaussian kernel approach with a distance bandwidth of 15.8
kilometres obtained by using a cross-validation procedure. We also estimated an adaptive GWOR
model with an optimum bandwidth of the nearest 956 neighbours, which accounts for roughly 36%
of the total sample. The obtained spatial patterns of local coefficients are quite similar. A Monte
Carlo permutation approach, outlined above, was used to test whether the spatial variations in
local coefficients are statistically significant, or due to random sampling uncertainty. The non-
stationary test results suggest that spatial heterogeneity in the associations of income, air pollution
and locational factors to life satisfaction is unlikely due to random sampling uncertainties.

Looking at the distribution of the local coefficients of income (Log Income), there is relatively large
variability, shown by the difference between the 2.5-th and 97.5-th percentiles of the distribution of
local coefficients and also the large standard deviation ). Figure 1 depicts the interpolated surface
of the associations between income and life satisfaction with breaking points being the quintiles of
local coefficients. Approximate significance inferences of local coefficients are also presented in the
map. Each residence location is represented by a cross symbol and the statistical significance is
indicated by different colours: black indicating significant and white insignificant at the conventional
5% significance level, depending on whether the absolute t-values of local coefficients are above 1.96
or not. From Figure 1, we see that the income-life satisfaction associations are increasing from
the central urban area of Beijing to the suburban areas especially in the northwest and southwest
Beijing.

The local coefficients of air pollution also exhibit large spatial variability, indicated by a roughly 41
per cent increase in the local coefficients from the lower quantile to the upper quantile of the dis-
tribution. The Monte Carlo non-stationary test for air pollution yields a p-value of 0.01, producing
strong evidence on the spatial variation in how air pollution is related to life satisfaction. Figure
2 shows an interesting spatial pattern of local pollution coefficients. Overall, the central urban
areas of Beijing see a stronger negative relationship between air pollution and life satisfaction than
the suburban areas do, indicating a stronger aversion of air pollution for residents living in central
urban areas.

5 Conclusion

In this paper, we extend the geographically weighted regression modelling framework to accommo-
date categorical response variables that are measured on an ordinal scale by developing a GWOR
model. Ordinal response variables prevail in survey data and are increasingly explored in a wide
range of social science disciplines, although in a way that the spatiality of the data under study is
not usually taken into account seriously. The proposed methodology offers a flexible exploratory
tool to explore the spatial aspects of data and address the issue of spatial heterogeneity. The
usefulness of the proposed methodology is demonstrated by exploring the socio-spatial variation of
resident’s life satisfaction in urban Beijing and modelling the spatially varying relationships between
life satisfaction and income, air pollution and other locational factors.
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Figure 1: The spatial variation in the association between income and life satisfaction

Figure 2: The spatial variation in the association between air pollution and life satisfaction
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