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Abstract
Although simulation models of geographical systems in general and agent-based models in par-

ticular represent a fantastic opportunity to explore socio-spatial behaviours and to test a variety
of scenarios for public policy, the validity of generative models is uncertain until their results
are proven robust. Sensitivity analysis usually include the analysis of the effect of stochasticity
on the variability of results, as well as the effects of small parameter changes. However, initial
spatial conditions are usually taken for granted in geographical models, thus leaving completely
unexplored the effect of spatial arrangements on the interaction of agents and of their interac-
tions with the environment. In this contribution, we present a method to assess the effect of
initial spatial conditions on simulation models, using a systematic generator controlled by meta-
parameter to create density grids used in spatial simulation models. We show, with the example
of two very classical agent-based models (Schelling’s models of segregation and Sugarscape)
that the effect of space in simulation is significant, and sometimes even larger than parameters
themselves. We do so using high performance computing in a very simple and straightforward
open-source workflow.
Keywords: Space, Initial conditions, Sensitivity, ABM.

1 Introduction

Simulation has been recognised and increasingly used by geographers to explore various geographical
processes and problems within virtual laboratories. It appears as a very fruitful way to overcome
the difficulty of analytic resolution of many spatial models developed in the past, and to explore
the possible trajectories of social and ecological systems in space and time. The specificity of
geographical models compared with models from other social sciences is usually regarded as the
way geographers consider space and spatial interactions, driven by an explicit interest in the way
space influences the outcomes of the model. Geographers are indeed concerned about understanding
and modelling how space plays a role in social interactions and environmental processes, and whether
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its action is placed-based or place-neutral. We think simulation can become a very good tool to
achieve this, provided that models include relevant spatial description and modelling, behavioural
rules that take space into account, and provided model evaluation stresses the sensitivity of output
variations to the way space is modelled. This communication focuses on a way to do so: by using
a sensitivity method to test the model’s outcomes to initial spatial conditions.

2 Why spatial patterns are expected to impact social simulations

2.1 Because actual cities are not regular grids

Although this may seem obvious, cities are not regular grids of isotropic densities. Modelling
may be about abstracting features to highlight processes in a way which is simpler than reality.
However, the uniform grid which represents space in most simulation models is potentially not
enough to represent urban processes because density and accessibility have environmental, economic
and social consequences. An intermediate and more meaningful way of abstracting space might thus
be to consider, not the peculiarities of every city, but their broad density structures. In Europe for
example, one can find broad types of density distributions (Le Néchet (2015)). At initialisation, we
then expect agents to be distributed in different patterns, which influence results in the long run.
A first approach could be to evaluate the effects of the same set of social mechanisms, but modelled
in different types of cities, for example monocentric, polycentric and discontinuous.

2.2 Because actual agents are not random walkers

We expect spatial patterns to influence model outcomes also because the agents’ rule of action itself
might depend on the spatial structure of the environment. Indeed, mechanisms of surrounding
sensing will be impacted by different distributions of density. For example, agents tend to create
buffer zones if they are allowed network-based rather than isotropic movements (Banos (2012)),
while the vision / sensing mechanism is sensitive to the scale of modelled environments (Laurie and
Jaggi (2003); Fossett and Dietrich (2009)). Finally, households can have different preferences with
respect to the built-environment (Spielman and Harrison (2014)), thus creating a sensitivity to the
initial form of the city modelled.

3 Method

In this paper, we suggest tackling sensitivity to spatial conditions by generating a variety of density
grids to feed into simulation models at initialisation, and exploring the sensitivity of the model
outcomes to the variation of meta-parameters (i.e. parameters used to generate initial spatial
conditions). The purpose is two-fold: 1/ to test the robustness of simulation results to small
variations of meta-parameters within a typical category of space (a monocentric case for example)
and 2/ to study the non-trivial effects of typical categories of spatial distribution (monocentric vs.
polycentric for example) on the results of a given model (cf. figure 1).
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Figure 1: General workflow of our method

3.1 Constructing a spatial generator

Our spatial generator applies an urban morphogenesis model (Batty (2007)), which has been gener-
alised, explored and calibrated (Raimbault et al. (2014)). In a nutshell, grids are generated through
an iterative process which adds a quantity N (population) at each time step, allocating it through
preferential attachment characterised by its strength of attraction α. This first growth process is
then smoothed n times using a diffusion process of strength β. Grids are thus generated from the
combination of the values of these four meta-parameters α, β, n and N , in addition to the random
seed. To ease our exploration, only the distribution of density is allowed to vary rather than the
size of the grid, which we fix to a 50x50 square environment of 100,000 units (cf. figure 2).

Figure 2: Four examples of grids produced by the spatial generator

3.2 Including a (typical) variety of initial conditions in the sensitivity analysis

In order to generate density grids which correspond to empirical density distributions, we select
among the generated grids using an objective function which matches the point cloud of 110
metropolitan areas in Europe described by four dimensions: their concentration index, hierarchy
index, centrality index and continuity index (cf. Le Néchet (2015)). A stochastic exploration of a
Latin Hypercube Sampling of 2000 points in the 4-dimensional space of parameters α, β, n, N gives
a subset of 170 interesting grids matching empirical densities, which constituted our set of different
initial spatial conditions. These are further clustered into three classes of morphology: compact
(e.g. Vienna), polycentric (Liege) and discontinuous (Augsburg) in order to evaluate the non-trivial
effects of urban form on simulation results. We select 15 grids of each type to work with.
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4 Application cases

We use our set of initial density grids in two spatial simulation models: Schelling and Sugarscape.

4.1 Schelling’s model of residential segregation

Schelling’s model consists in a abstract urban housing market where agents of different nature sense
their environment, evaluate their satisfaction in terms of neighbourhood composition, and relocate
if unsatisfied. It has been shown by Schelling (1969) that even tolerant agents tended to produce
segregated patterns because of the complexity of their local interactions. The main parameters of
this model are the tolerance level (% of agents similar to ego), the scope of sensing and the percentage
of vacant spaces in the housing market. In addition, we are interested in testing the impact of the
spatial distribution of housing capacity in this project, using the generated grids.

4.2 Sugarscape model of resource extraction and population settlement

Sugarscape is a model of resource extraction which simulates the unequal distribution of wealth
within a heterogenous population (Epstein and Axtell (1996)). Agents of different vision scopes
and different metabolisms harvest a self-regenerating resource available heterogeneously in the initial
landscape, they settle and collect this resource, which leads some of them to survive and others to
perish. The main parameters of this model are the number of agents, their minimal and maximal
resource. In addition, we are interested in testing the impact of the spatial distribution of the
resource in this project, using the generated grids. The outcome of the model is measured as a
phase diagram of an index of inequality for ressource distribution (Gini index).

5 Results

We proceed to 4,500,000 simulation runs of the Schelling model (1000 parameter combinations x
45 density grids x 100 replications), using OpenMOLE to distribute the computation, and apply
segregation measures to characterise the results. We find that the different urban morphologies
impact the parameter interaction patterns, and that polycentric and discontinuous cities appear
systematically more segregated than compact cities in terms of dissimilarity and entropy index. For
Sugarscape, 2,500,000 simulations (1000 parameter points x 50 density grids x 50 replications) allow
us to show that the model is more sensitive to space than to its other parameters, both qualitatively
and quantitatively: the amplitude of variations across density grids is larger than the amplitude in
each phase diagram, and the behavior of phase diagram is qualitatively different in different regions
of the morphological space.
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