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Abstract  
We applied a segmentation algorithm to a high resolution global grid of climatic variables 
(WorldClim dataset) to delineate Earth’s land surface into spatial climate units (SCUs) having 
levels of climate inhomogenity tightly controlled by algorithm’s merging threshold parameter. 
The result is an accurate global map of spatial variability of climate. Interestingly, this variability 
varies greatly with geographical location. Using resultant segmentation we show that some 
climatic zones in the widely-used Köppen–Geiger classification (KGC) are climatically 
homogeneous while other are not, underscoring a qualitative character of the KGC. We attribute 
this result to a non-linear relationship between changes in vegetation types (on which the KGC is 
based) and changes in values of climatic variables.  We also demonstrate the utility of climate 
segmentation for mapping specific climate types using the island of Great Britain as an example. 
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1. Introduction  
The only widely-used delineation of land surface into different climatic zones is the Köppen–
Geiger classification (KGC). However, the KGC can only be considered as the first-order, broad-
scale qualitative overview of the spatial variability of climate. The KGC classifies climates using 
vegetation zones as proxies for climate; it expresses observed boundaries between different 
vegetation zones in terms of climatic variables. Thus the resolution of the KGC can only be as 
high as the resolution of the vegetations zones. Availability of high resolution world-wide grids 
of climatic variables makes possible to classify global climates directly without resorting to 
proxies such as vegetation types. Data clustering techniques were used ((Zscheischler et al. 2012; 
Zhang and Yan 2014; Netzel and Stepinski, 2016) to divide global climate data grid cells into 
clusters which are identified with different climatic zones. However, this approach did not yield 
much insight beyond and above of what we already knew from the KGC. This is because in the 
aforementioned studies the selected numbers of clusters were guided by the number of zones in 
the KGC.  As a result, clustering-based classifications of climates are also broad-scale and, in 
general, similar to the KGC. Also, in clustering, the levels of clusters’s inhomogeneities are not 
controlled, so different clusters (climatic zones) have different levels of inhomogeneity.  
 
To get more insight into spatial variability of global climate we performed a segmentation of 
climatic grid. Analogous to the technique employed in image analysis, climate segmentation 
partitions climatic grid into multiple segments (spatial climate units or SCUs). The result is a set 
of SCUs that collectively cover the entire land surface. A level of dissimilarity between grid cells 
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(local climates) in the SCU is controlled by segmentation algorithm’s merging threshold 
parameter and is low. Adjacent SCUs have noticeably different climates. Segmentation is thus 
well-suited to reveal spatial variability of global climate; where climate changes on the small 
length-scale SCUs are small, but where climate changes on the large length-scale they are large. 
Juxtaposition of the KGC and segmentation maps shows a different degree of climate 
inhomogeneity in different KGC zones. In zones with the high degree of inhomogeneity 
vegetation types remain the same despite significant changes in climatic variables. In addition to 
revealing spatial variability of global climate, segmentation also identifies different climates in a 
region totally assigned to a single KGC zone. We also demonstrate an ability of segmentation to 
yield more specific maps of climate types using the island of Great Britain as an example.  
 

2. Data and Methods  
We use monthly sum of precipitation (P) and average temperature (T) from WorldClim 
(http://www.worldclim.org) 2.5 arc second (~5 km at the equator) global grid of climatic 
variables. This data are long term averages calculated from measurements taken between 1960 
and 1990 in a world-wide network of climate stations and interpolating to the grid. Data has been 
normalized using procedure described in details by Netzel and Stepinski (2016). 
 
A climate for a given grid cell, labelled i, is mathematically represented by a bivariate cyclic 
time series denoted by Ci ={(Ti

1 , Pi
1) , . . ., (Ti

12 , Pi
12)}, where the time series progresses through 

12 months. A time series representation of climate has advantage of taking into consideration 
month-to-month sequencing information. To measure dissimilarity, D(Cm,Cn), between two 
climates we use a time-shift invariant version of the Euclidean distance introduced in Netzel and 
Stepinski (2016).  This function is a computationally efficient approximation of the DTW 
distance (Berndt and Clifford 1994) and thus takes advantage of sequencing information in time 
series representing climates. Our dissimilarity function is normalized to yield values between 0 
and 1. D facilitates a holistic comparison of two climates taking into account not only the values 
of Tj and Pj j={1, . . . ,12} in the two locations but also their month-to-month progression over 
the year. D is designed to be small when observers at the two locations experience similar 
progression and character of seasons. Given the large size of the grid we use a modification of 
the fast scanning segmentation algorithm (Ding et al., 2009). The algorithm has a single 
parameter – a merging threshold which limits a level of allowable climate inhomogeneity in each 
segment.  

3. Results  
Running segmentation algorithm with the merging threshold set to 0.2 we obtained 20,488 
segments (SCUs) ranging in size from 5 km2 to 10,995,775 km2; the mean area of a SCU is 6687 
km2. Many small segments are islands or are located in the mountainous areas. The average 
segment’s internal dissimilarity is 0.11 (standard deviation is 0.06) and the average segment’s 
external dissimilarity (mean dissimilarity between a focus segment and its neighbouring 
segments) is 0.37 (standard deviation is 0.1). This indicates a good quality of segmentation as an 
average segment is almost four times more cohesive than its neighbourhood.  



 
 

Figure 1. Boundaries of spatial climate units (SCUs) are shown by black lines. SOCs are 
classified using KGC; their classes are shown in colors according to the legend.  

 
Threshold 0.2 means that dissimilarity between cells in a segment is smaller than 0.2. Because 
our dissimilarity measure is holistic, the meaning of the value of 0.2 can best be appreciated by 
giving an example: D(London, city) < 0.2 for Oxford, Cambridge, York. For those familiar with 
climates in these cities this example gives an idea of restriction on variability of climates within a 
segment. Others can explore similarity/dissimilarity of climates worldwide using our online 
application ClimateEx (http://sil.uc.edu/webapps/climateex/). 
 
Fig.1 shows the global segmentation of climatic grid. SOCs are also classified according to KGC 
(using their centroids). Spatial variability of climate is indicated by density of SOCs, which is the 
highest in the mountainous areas (Himalaya, Andes, etc) and in the tropical regions. It is the 
lowest at the high northern latitudes and in the deserts. A mismatch between SOCs and KGC is 
most pronounced for zones Af, Am, and Aw and also present for the Cf.  Zones BW, BS, and Df 
show the least amount of mismatch with SOCs. Thus, high climate variability in tropical zones 
(due to the wide range of precipitation) is not captured by the KGC vegetation-based rules. 
Desert and continental zones have less variation in climatic variables and fit more closely to 
SOCs. 
 
Fig. 2 shows boundaries of SCUs in Great Britain, an island that is classified by the KGC as 
belonging in its entirety to the Cf zone. The background is the map of D(cell, London), a 
dissimilarity between a climate at a given location and the climate in London. Such map  
indicates climate variability at the cell level. Clearly, the boundaries of SCUs enclose locations 
with similar values of D(cell, London). For the nine largest SCUs in Great Britain we show 
climatograms of their centroids. They show variety of climates, with the discriminant being the 
amount of precipitation. The nine SCUs can be further classified on the basis of similarities of 
their climatograms; we choose to classify them into three classes as shown in the inset to Fig.2. 
The first climate class includes a single SCU located along the eastern part of the island; 
compared to the rest of the island it is characterized by lower precipitation. The second class 
include three SCUs, two in Scotland and one in Wales; it is characterized by the largest amount 



of precipitation. The third class, which includes five SCUs, represents a transition between the 
first two.  

 

 
Figure 2. (Left) Boundaries of SCUs in Great Britain overlaid on the map of climate 

dissimilarities from the climate in London; inset shows a classification of SCUs into three 
climate types. Numbers of nine largest SCOs are given in blue.  (Right) Climatograms for the 

nine largest SCOs.  

4. Conclusions  
One could expect that spatial variability of global climate is a problem that has been already 
sufficiently addressed, but it hasn’t probably because of overconfidence in the KGC. Availability 
of global, high resolution climatic grids did not change the situation because of the focus on 
“reproducing” the KGC using data clustering methods. Our thesis is that grid segmentation rather 
than clustering is the most fruitful data analysis method to get new insight into spatial variability 
of global climate. The key to this advantage is its tight control over inhomogeneity of segments, 
a property that clustering lacks. Thus, spatial distribution of climate variability is revealed by just 
displaying a map of SCUs (Fig.1). Using climate segmentation we were able to understand 



limitations of the KGC. KGC has been relying on the assumption that vegetation is a good proxy 
for climate. Our results show that this may be true but only up to the point.  A mismatch between 
our segmentation and KGC in troopics can be explained by findings (Schuur, 2003) that the 
value of net primary productivity (NPP) starts to decline at high precipitation (> 2400 mm/year) 
in tropical ecosystems thus decoupling the variation in climate from variation in vegetation and 
undermining the principle of the KGC. Does it matter? Conceptually, it certainly does. In 
practise, the KGC is most often utilized in the fields of agriculture, ecology, or forestry, all 
concerned with vegetation zones rather than climate zones per se. Segmentation of global climate 
bring attention to a difference between climatic and vegetation zones which is too often blurred. 
 
A segmentation of global climate is a showcase of the methodology, but we also have shown, 
using the Great Britain as an example, that segmentation offers a principled and quantitative 
means for delineation of areas with different climates on a scale of a single country. On such 
scale segmentation may be used to delineate individual mesoclimates if weekly or daily climatic 
data are available at sufficiently high spatial resolution.  
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