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Abstract 

With the increasing prevalence of GPS tracking capabilities on smartphones, GPS 

trajectories have proven to be useful for an extensive range of research topics. Stop 

detection, which estimates activity locations, is fundamental for organizing GPS 

trajectories into semantically meaningful journeys. With previous methods 

overwhelmingly dependent on thresholds, contextual information or a pre-understanding 

of the GPS records, this paper addresses the challenge by contributing a ‘top-down’ raster 

sampling method which samples pre-calculated GPS indicators and clusters the raster cells 

with significantly different values as stops. We report a comparison of a set of pre-

calculated GPS indicators with two baseline methods. By referencing a ground truth travel 

dairy, the raster sampling method demonstrates good and reliable capabilities on producing 

high accuracy, low redundancy and close proximity to the ground truth in three distinct 

travel use cases. This further indicates a good generic stop detection method. 

Keywords: Stop Detection, Raster, GPS, Semantic Trajectory 

1. Introduction 

GPS trajectories, track records with latitude/longitude and timestamps, provide new opportunities to 

capture human activity patterns, improving transportation planning methods and models, modelling 

the spread of disease and analysing and clustering individuals for meaningful semantic 

recommendations on social networks. Stay point detection is now recognized as an important phase 

to better infer activities that are conducted at certain locations, to enable segmentation of the whole 

trajectory into separate travel purposes and to indicate travel mode interchange points.  

Many current stop or stay point detection methods such as density-based approaches (Schoier and 

Borruso 2011, Hinneburg and Keim 1998, Ankerst et al. 1999, Campello et al. 2013), threshold-based 

approaches (Ashbrook and Starner 2003, Schuessler and Axhausen 2009, Srinivasan et al. 2009, 

Spaccapietra et al. 2008, Yan et al. 2008, Yan 2010) and locations of interest (Alvares et al. 2007) scan 

GPS records while applying both temporal and spatial constraints for stop detection. Contextal 

information, thresholds and parameters are prerequisites for good results. A raster sampling based 

method is proposed as a ‘top-down’, rather than ‘bottom-up’, approach which employs a unified 

raster template to sample some pre-calculated GPS indicators.  Our approach is different from existing 

raster approaches such as kernel density (Thierry et al. 2013, Lei et al. 2011) as we are not sampling 

the density of GPS records but rather taking GPS inferred information such as total dwelling time, 

frequencies of visits and travel time into account. The proposed raster method with minimal threshold 

and parameter settings is demonstrated to be fast and accurate by comparing the experiment result 
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with the ground truth travel dairies deliberately collected for three use cases with significant different 

travel behaviours within diverse transport environment. 

2. Data Preparation and Method 

2.1 Data Cleaning and Ground Truth 

Our data is a collection of three user’s travel activities: one in a suburban area of Glasgow, one inside 

city of Glasgow and one in London, harvested from the Catch! smartphone journey planning app. 

Figure 1 illustrates the spatial distribution of their activities in Kernel Density Estimation (KDE) maps. 

The GPS records are cleaned to have no duplicated timestamps and to ensure the inferred speed is 

always under 200km/h. The analysis is performed on day-by-day GPS episodes. The ground truth is a 

travel dairy containing geographical locations of stops in chronological order.  

 

Figure 1. KDE maps for use cases 1, 2 and 3 from left to right respectively. 

2.2 Method 

The proposed stop detection method takes a top-down sampling process. With a given grid cell, <

𝑟𝑗 , 𝑐𝑘  >𝑗∈𝑟𝑜𝑤𝑠,𝑘∈𝑐𝑜𝑙𝑢𝑚𝑛𝑠  , certain GPS values are sampled. We report the results of our experiment 

for four pre-calculated GPS indicators to compare their ability to infer stops accurately. They include  

(a). 𝑑𝑢𝑟_𝑙𝑎𝑔𝑖 dwelling time as a time difference between two consecutive GPS tuples; 
(b). 𝑎𝑐𝑡𝑢𝑎𝑙(𝑑𝑢𝑟_𝑙𝑎𝑔(𝑗,𝑘)) as a dwelling time deducing the travel time,  

 
𝑎𝑐𝑡𝑢𝑎𝑙(𝑑𝑢𝑟_𝑙𝑎𝑔(𝑖)) = 𝑑𝑢𝑟_𝑙𝑎𝑔𝑖 − 𝑒𝑠𝑡(𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒)𝑖  (1) 

 
The estimated travel time is an estimation based on the speed before and after a GPS record. 

𝑒𝑠𝑡(𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒)𝑖 =  
𝑑𝑢𝑟_𝑑𝑖𝑠𝑡𝑖

𝑚𝑒𝑎𝑛(𝑠𝑝𝑒𝑒𝑑𝑤𝑖𝑛𝑑𝑜𝑤(𝑖) ),⁄  

where 𝑤𝑖𝑛𝑑𝑜𝑤(𝑖) is< 𝑓𝑜𝑟𝑒𝑁𝑒𝑖𝑔ℎ𝑜𝑢𝑟(5) , 𝑎𝑓𝑡𝑒𝑟𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(5) > (2) 
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(c).  
𝑑𝑢𝑟_𝑙𝑎𝑔(𝑗,𝑘)

𝑓𝑟𝑒𝑞_𝑣𝑖𝑠𝑖𝑡𝑠(𝑗,𝑘) ⁄ as an estimation of single trip GPS dwelling time at a given cell 

with arbitrary definition of trips when consecutive timestamps have a gap of more than 300 
seconds;  

 

(d).  
𝑎𝑐𝑡𝑢𝑎𝑙(𝑑𝑢𝑟_𝑙𝑎𝑔(𝑗,𝑘))

𝑓𝑟𝑒𝑞_𝑣𝑖𝑠𝑖𝑡𝑠(𝑗,𝑘)
⁄ as an estimation of actual dwelling time (b) per visit. 

Finally, we use Natural Break (𝐽𝑒𝑛𝑘𝑠) (https://pypi.python.org/pypi/jenkspy) to group sampled raster 

values into classes where the average deviations to the mean is minimized inside and maximized 

outside the classes. To avoid pre-setting the number of classes, goodness of variance fit (over 0.8) is 

adopted. We further select the raster cells with values higher than the 25% quantile of the clustering 

result as stops (Note that the data clustering algorithm is not the main contributions of the paper, 

other data clustering method such as 𝑘-means is also applicable).  A threshold method (e), using 

thresholds to select stops with higher GPS dwelling time and method (f), detecting stops less 

‘bounded’ with the road network through a map matching process, are chosen as baselines for 

comparison. Figure 2 demonstrates a typical detection results of one trip produced by all the methods.  

 

Figure 1. An example of one day output of (a) – (f) methods. Ground truth stops are denoted in green 

large points whilst detected stops in smaller red points against sampling raster. We convert results of 

baselines into raster format for comparison purposes.  
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3. Experimentation Results 

For comparing the accuracy of detected stops with the ground truth stops, we measure the distances 

between a ground truth stop to the nearest detected stop cell’s centroid for accuracy. Three distances 

tolerance levels, 100, 200, 300 meters, are tested. Precision/recall rates for individual methods in each 

use case are calculated as  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒(𝑆𝑡𝑜𝑝𝑠)𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑙𝑒𝑟𝑒𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙(𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ𝑆𝑡𝑜𝑝𝑠)
  (3) 

 

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒(𝑆𝑡𝑜𝑝𝑠)𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑙𝑒𝑟𝑒𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙(𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑆𝑡𝑜𝑝𝑠)
 (4) 

 
Figure 3 shows the precision/recall plots for the collected detection accuracy of methods (a)-(f) in 

three use cases. Each indicator has a distinct colour and shape where the darker the colour, the larger 

the distance tolerance. It is found that indicators (a) and (b) perform closely with higher 

precision/recall scores in all the use cases. Indicator (b) (in purple dots) is identified as a consistently 

strong indicator and marginally better in use case 1 and 3. Indicators (c) and (d) also produce similar 

but lower recall rates although the precisions are higher than for indicators (a) and (b). Indicators (e) 

and (f), on the contrary, are likely to generate higher recall but low precision rates.  

 

Figure 3. The precision/recall plots for the collected detection accuracy of the GPS indicators (a)-(d) 

and baselines (e) and (f) in three use cases with three distances tolerance settings. 

As a sensitivity test, the performance of different methods under various cell sizes is shown in Table 1 

among which the better performing indicators (a) and (b) are illustrated in Figure 4 with (a) in red (b) 

in green. The darker the colour, the larger the distance tolerance. It is shown that precisions/recall for 

(a) and (b) are again similar. Both rates are stable around 0.8, especially for use cases 1 and 2. Precision 

drops to around 0.6 while recall is high at around 0.9 for use case 3 where the user has a multi-modal 

travel pattern within an extremely complex travel environment. A slight decreasing trend can be 

observed when cell size increases.  
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Figure 5. A comparison of precision/recall rates for raster sampling method (a) and (b) with an 

adjustment of cell sized from 0.00091 decimal degrees under WGS_1984 to one and half and double 

size (approximately 60, 85 and 110 meters). 

The detected stops, as raster cells, can be measured w.r.t their proximity to the ground truth. We 

collect the distances from every ground truth stop to their nearest detected stops to examine which 

method from (a)-(f) has a higher probability of detecting stops closer to the ground truth. Taking use 

case 1 as an illustration, Figure 6 shows that except for the two baselines, method (b) takes a clear 

lead among all the indicators.  

 

Figure 2. Probability Distribution of Collected Distances from Ground Truth Stops to the Nearest 

Detected Stops for (a) - (f) Methods. 
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4. Conclusion  

This paper describes our effort towards designing a raster sampling based stop detection method with 

different indicators extracted from the GPS trajectories. The accuracy of detected stops is justified in 

three different use cases where users have distinct travel behaviour within different travel 

environment. Results show that raster methods in general produce satisfactory stops from the 

perspective of high and more stable precision/recall and proximity to detected stops and ground truth 

in the three use cases, with slight variations when adjusting the cell sizes. Although the accuracy 

reduces in more complicated use cases, with future combinations of smoothing functions, dwelling 

time (a) and dwelling time with reduced travel time (b), are strong indicators for a generic raster based 

stop detection method.  
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Cell Size=0.00091≈60 meters  Cell Size*1.5=0.00091*1.5≈85 meters  Cell Size*2=0.00091*2≈110 meters  

Use Case 1 Use Case 2 Use Case 3 Use Case 1 Use Case 2 Use Case 3 Use Case 1 Use Case 2 Use Case 3 
 

recall precision recall precision recall precision recall precision recall precision recall precision recall precision recall precision recall precision 

(a) 100 0.864744 0.734441 0.832520 0.592305 0.900298 0.544765 0.785256 0.64185 0.859756 0.644164 0.916667 0.595773 0.82062 0.70098 0.842276 0.656388 0.891369 0.578366 

(a) 200 0.894551 0.763578 0.846748 0.602468 0.900298 0.544765 0.797756 0.655037 0.888211 0.665941 0.922619 0.601726 0.918376 0.780836 0.880894 0.689005 0.912202 0.589279 

(a) 300 0.894551 0.763578 0.846748 0.602468 0.900298 0.544765 0.797756 0.655037 0.888211 0.665941 0.922619 0.601726 0.918376 0.780836 0.880894 0.689005 0.916667 0.592255 

(b) 100 0.869872 0.719689 0.806452 0.577611 0.906250 0.565407 0.776175 0.622436 0.854839 0.697427 0.909226 0.574943 0.812073 0.712576 0.805691 0.643438 0.890774 0.591288 

(b) 200 0.907372 0.754029 0.817204 0.582988 0.906250 0.565407 0.788675 0.635256 0.887097 0.726229 0.915179 0.580896 0.914637 0.797405 0.852439 0.692218 0.911607 0.602597 

(b) 300 0.907372 0.754029 0.817204 0.582988 0.912202 0.569872 0.788675 0.635256 0.887097 0.726229 0.915179 0.580896 0.914637 0.797405 0.852439 0.692218 0.916071 0.605574 

(c) 100 0.759722 0.813782 0.539815 0.644444 0.758170 0.543129 0.761538 0.755311 0.60098 0.692157 0.816993 0.633442 0.764103 0.794414 0.535185 0.686111 0.784314 0.621102 

(c) 200 0.777030 0.828205 0.572222 0.700000 0.771242 0.559469 0.796474 0.799267 0.635294 0.75098 0.823529 0.63671 0.812179 0.852106 0.613889 0.792593 0.820261 0.652801 

(c) 300 0.777030 0.828205 0.581481 0.727778 0.777778 0.564371 0.796474 0.799267 0.635294 0.75098 0.823529 0.63671 0.816987 0.864927 0.613889 0.792593 0.820261 0.652801 

(d) 100 0.720726 0.849817 0.539815 0.644444 0.799020 0.659633 0.731197 0.739744 0.620588 0.695098 0.854575 0.726751 0.726496 0.827564 0.516667 0.681481 0.825163 0.686368 

(d) 200 0.728419 0.855311 0.553704 0.672222 0.802288 0.664535 0.761325 0.78141 0.654902 0.753922 0.861111 0.730672 0.774573 0.882051 0.613889 0.806481 0.851307 0.709788 

(d) 300 0.728419 0.855311 0.562963 0.700000 0.808824 0.671071 0.761325 0.78141 0.654902 0.753922 0.861111 0.730672 0.774573 0.882051 0.613889 0.806481 0.851307 0.709788 

(e) 100 0.937073 0.387613 0.899187 0.469742 0.952381 0.199362 0.912714 0.359623 0.808943 0.607877 0.872024 0.457775 0.873504 0.446626 0.708537 0.553262 0.830357 0.44365 

(e) 200 0.951496 0.393489 0.933740 0.489080 0.961310 0.201594 0.936752 0.373191 0.846341 0.639177 0.885417 0.46715 0.922329 0.472641 0.781707 0.619928 0.857143 0.457114 

(e) 300 0.961111 0.397763 0.933740 0.489080 0.961310 0.201594 0.936752 0.373191 0.846341 0.639177 0.885417 0.46715 0.922329 0.472641 0.781707 0.619928 0.857143 0.457114 

(f) 100 0.947650 0.321370 0.949187 0.136018 0.881845 0.305179 0.925214 0.300621 0.934959 0.159497 0.952381 0.279078 0.890598 0.419322 0.860569 0.169531 0.925595 0.265302 

(f) 200 0.957265 0.322909 0.961382 0.138429 0.881845 0.305179 0.944444 0.306497 0.945122 0.162478 0.96131 0.281629 0.952457 0.439694 0.922764 0.181867 0.946429 0.267947 

(f) 300 0.957265 0.322909 0.967480 0.139863 0.881845 0.305179 0.944444 0.306497 0.945122 0.162478 0.96131 0.281629 0.952457 0.439694 0.928862 0.183899 0.955357 0.270923 

 

Table 1.  Precision/recall rates in summery using 100,200 and 300 meter distance tolerance for (a) – (f) method with cell sizes adjusted as 0.00091, 

0.00091*1.5, 0.00091*2 in WGS_1984.


