Time: the late arrival at the Geocomputation party and the need for
considered approaches to spatio-temporal analyses
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Abstract

This study uses exploratory approaches for the robust development of a Geographical and
Temporal Weighted Regression (GTWR) model in the context of limited theoretical
constructs for modelling spatio-temporal processes via a kernel-based model. These
include establishing the appropriateness of a GTWR by considering autocorrelation and
relationship heterogeneity effects, and also visualising all potential space-time kernel
bandwidths, so that the GTWR model is correctly specified, relative to the problem being
investigated. For demonstration, this study uses a 16-year livestock population data set for
Mongolia linked to environmental, climatic, socio-economic and agricultural covariates in
order to predict livestock populations using GTWR.
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1. Introduction

A number of recent papers have sought to develop and apply methods for spatio-temporal analyses
with geographically weighted (GW) models, and a subset have been published under the banner of
Geographical and Temporal Weighted Regression (GTWR), building upon GW regression (GWR)
(Brunsdon et al.,, 1996). The real advance is that GTWR models propose spatially and temporally
weighted kernels (Huang et al., 2010; Yu, 2014; Wrenn and Sam, 2014; Fotheringham et al., 2015).
The methodology of a GTWR can be considered the first step to expanding any GW approach to the
space-time case within the generic GW framework (Gollini et al., 2015).

In brief, GW models calculate a series of local statistics or local models using data falling under a
moving kernel, with the data weighted by their distance to the kernel centre. They reflect Tobler’s first
law of geography and allow spatial non-stationarity to be explored and handled. Kernel bandwidth
selection is a critical step GW modelling and bandwidth selection. It can be optimised by minimising
some measure of model fit such as AIC or leave-one-out cross validation. The elegance of the GW
framework is for two main reasons. First, it reflects the spatial pattern of many observed
anthropogenic and environmental processes: birds of a feather do flock together. Second, it is
underpinned by well-established and universally agreed theoretical frameworks describing spatial
non-stationarity of many process and distance decay, that is rarely challenged by observations and
measurements.



A number of GW methods exist for handling spatio-temporal data including various GW panel
regression formulations (Yu, 2010; Lin, 2011; Cai et al., 2012; Tabak et al., 2013). However, the critical
issue in GTWR is how to calibrate the kernel bandwidth. In contrast to space, the temporal properties
of many processes and associated relationships do not simply decay with time as it were (i.e. as time
increases) in contrast to many spatial processes. Rather than a simple decay, they may have a cyclic
nature — the daily commute, weekly shopping, seasonal weather patterns —and have some degree of
regularity. Additionally, the distribution of many processes in time at any given location, may exhibit
alternate, abrupt or cyclic behaviours. Universally agreed geographical frameworks such as Tobler’s
first law and the MAUP (Openshaw, 1984) have not yet been established for spatio-temporal
processes. As yet there is no well-developed geographical philosophy about how spatio-temporal
processes behave, or ways to overcome the issue that distances in space and time are measured in
different metrics. Although much theoretical work can be found within various sophisticated statistical
frameworks, the techniques are commonly suited to continuous processes, such as those resulting
from air pollution monitoring (Cressie and Wikle, 2011).

In the context of GTWR, there are two critical problems in bandwidth selection that have not been
satisfactorily overcome in previous research. The first is the space-time distance metric: space and
time are measures in different dimensions (Huang et al, 2010). The second is computational.
Fotheringham et al. (2015) note that to fully investigate all possible bandwidth combinations in a
space-time space would require an extremely large number of potential bandwidths to be computed
and evaluated. We deal with both of these issues in this paper. Previous work has applied different
approaches to optimise the GTWR space-time bandwidth. Huang et al. (2010) and Yu (2014) used
different methods to determine a single parameter to weight and relate spatial and time kernels.
Huang et al. (2010) incorporated a “temporal heterogeneity” measure to weight the distance in time
between data for two locations. Yu (2014) modelled the salience of past observations to the question
being asked. Wrenn and Sam (2014) used the Mahalanobis distance to calculate the distance from
each observation in space and time. A third approach is to optimize with respect to time and space
simultaneously, which despite computationally demanding (Fotheringham et al, 2015) is transparent
and makes less assumptions about the processes under investigation. The latter is the approach
adopted in this research.

However, rather than just proceeding with a GTWR analysis, this paper advocates taking a fresh look
at space and time by stepping back and reflecting on the nature of the process under consideration
and specifying temporal kernels that reflect their temporal properties. We use a Mongolian livestock
data set covering a 16-year period (described in Tsutsumida et al., in press) to examine changes in
cattle in relation to changes in environmental, climatic, socio-economic and agricultural covariates.

2. Data and Analysis

Annual data of cattle numbers for 1990-2006 for 341 soums (second-level administrative units) in
Mongolia were linked to annual data describing mean NDVI, annual rainfall, the number of households
working with livestock and the annual number reported cattle losses.

An extensive year on year initial investigation was undertaken to test for the presence of spatial
autocorrelation in the global regression errors via Moran’s I, together with the likelihood of
relationship spatial heterogeneity via the reporting of optimised GWR bandwidths. AIC values for each



annual global regression, annual simultaneous autoregressive regression and annual GWR were also
found. This analysis is reported elsewhere, but clear spatial effects were observed both for
autocorrelation and for heterogeneity, for all 16 years. The AIC values strongly suggested that a
relationship heterogeneity regression was appropriate for each year, rather than one employing
autocorrelation effects. This initial, purely spatial set of analyses, when considered as a whole, also
alluded to likely temporal dependencies. Thus moving to a GTWR model appears worthwhile. This
exploratory analysis is missing in much of the reported research on GTWR, which seems to have
inadvertently adopted the spirit of McNoleg (1998).

In order to deal with the bandwidth problems of dimension and dimensionality, an optimal (adaptive)
space time kernel was found via GTWR fits to all possible combinations of bandwidths from 5 to 100%
in steps of 1%, for each of the 16 years, sequentially adding data from previous years. From this the
optimum temporal and spatial bandwidth combination could be selected via a minimised AIC
approach. Thus the first model included all data from 2006 (i.e. simply a ‘GWR’ fit), the second model
included all data from 2006 plus temporally weighted data from 2005 (i.e. the ‘first GTWR’ fit), the
third included all data from 2006 plus temporally weighted data from 2005 and 2004 (i.e. ‘subsequent
GTWR’ fits), etc. In the temporal dimension, data were weighted using a bi-square function such that
data from the earliest years were weighted the least. A bi-square function was also employed in the
spatial dimension.

3. Results and Discussion

The resultant AIC map is presented in Figure 1, where an optimal temporal bandwidth was identified
at 12 years (i.e. data are temporally weighted, starting from 2005 and ending in 1994) and an optimal
spatial bandwidth was identified as the nearest 35% of the 341 soums.
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Figure 1: the AIC values for bandwidths from 1 to 100% (x axis) with data from 1990 to 2006 (y
axis). The contours and shading indicate the local minima and AIC values greater than 7000 have
been removed in each case.

As an example application, GTWR was used to predict cattle numbers for each soum in 2006. The
scatterplot of predicted against observed is shown in Figure 2 and the prediction errors are mapped
in Figure 3.
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Figure 2: The predicted cattle values (from a GTWR model incorporating temporally and spatially

weighted data) against observed values for each soum in Mongolia, for 2006.
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Figure 3: The mapped errors for GTWR predicted versus observed cattle numbers in 2006.

The main advances made in this paper are as follows:

It emphasises the importance of initial analyses to assess which (if any) spatial effects
(autocorrelation or heterogeneity) are more dominant, before proceeding to a space-time
regression analysis.

Then, if GTWR is to be undertaken, the optimum spatial bandwidth and temporal bandwidths
can be simultaneously determined, overcoming the issues of dimension and dimensionality
identify by Huang et al (2010) and Fotheringham et al (2015), respectively.

The shape and form of the bandwidths should reflect the logic of the question being asked of
the data —in this case to use GTWR as a predictor. Here, both time and space were weighted
using bi-square kernel, but these were of very different shapes: the spatial kernel
incorporating data that were within the bandwidth in 2 dimensions around the kernel
location, and the temporal kernel considered only data backwards in time from the time point

under consideration.



This highly exploratory approach is missing in much of the reported research on GTWR. It allowed this
research to: a) establish the appropriateness of a GTWR; and then b) to determine an appropriate
bandwidth shape and size for the predictive task in hand. This emphasises the need for investigation
and reflection when developing a GTWR analyses: don’t just plug all the data in and press the button.
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