
A MapReduce-Based Multiple Flow Direction Runoff 
Simulation 

 

Ahmed Sidahmed and Gyozo Gidofalvi 

 
GeoInformatics, Urban Planning and Environment, KTH 

Drottning Kristinas väg 30  

100 44 Stockholm 

Telephone: +46-8-790 8709 
Email:{sidahmed, gyozo}@ kth.se 

 

 

1. Introduction  

Using typical Digital Elevation Models (DEM) structures, many algorithms have been 

proposed, which can be grouped into two groups, single flow direction (SDF), and 

multiple flow direction (MFD). 

In SFD algorithms each cell has only one outlet. The flow is assigned to the neighbor 

cell with steepest down-slope (Tarboton 1997, Pilesjö and Zhou 1997, Qin et al 2007). 

The SFD is common and easy to apply (Tarboton 1997), and simple in terms of 

computation. However, SFD lacks the ability to properly model the flow in flat and 

relatively high divergent flows areas and creates parallel flows (Qin et al 2007); having 

only one outlet must be considered as illogical and it imposes great simplification (Pilesjö 

and Zhou 1997). In the other hand, MFD algorithms distribute the flow among down-

slope neighboring pixels proportionally to the slope. 

High performance computing was early recognized in the field of hydrological 

modeling. ParFlow presents a parallel solution for groundwater flows in 3D space (Ashby 

and Falgout 1996). Tian et al (2008) gave examples of using of Land Information System 

(developed by NASA) for high-resolution modeling of surface runoff on a high 

performance computing Linux cluster. 

The objective of this paper is to propose and develop a general computational 

methodology based on the MapReduce framework for grid-based MFD algorithms. 

2. BACKGROUND AND RELATED WORK 

2.1 MFD  

MFD algorithms is proven to be more accurate compared to SFD (Zhou and Liu 2002), 

but it comes at a high computation cost and complexity as the water in the SFD only flow 

towards one cell while in MFD water can flow towards eight neighbors. Quinn et al 

(1991) proposed distributing the flow proportionally to the slope weighted with contour 

length L, as in Equation 1 

 

∑ =
⋅

⋅
=

n

j jj

ii

i

L

L
f

1
)tan(

)tan(

β

β
      (tan(β) > 0; n <= 8)       (1) 

where fi represents the fraction of flow towards cell number i, tan(fi) and tan(fj) is the 

slope of cell i and j; Li and Lj is constants of cell i and j; the summation is only for down-



slopes. This method does not consider the degree of divergent formed by the center cell 

and its eight neighboring cells. 

Freeman (1991) proposed similar algorithm based on the slope and a constant P as in 

Equation 2 

 

∑ =

=
n

j

P

j

P

i

if

1
)tan(

)tan(

β

β
      (tan(β) > 0; n <= 8)       (2) 

 

and he suggested P to be 1.1, which was proved later to not be optimal for all surfaces 

(Pilesjö and Zhou 1997). Qin et al (2007) argued that this algorithm still does not 

consider the local terrain conditions. Many Algorithms have been suggested since then; 

readers are referred to Qin et al (2007) for more discussion on MFD algorithms. 

Qin et al (2007) proposed an algorithm that combine Equation 1 and 2, as well as 

considering the local terrain condition as in Equation 3  

 

∑ =
⋅

⋅
=

n

j

P

jj

P

ii
i

L

L
f

1
)tan(

)tan(

β

β
      (tan(β) > 0; n <= 8)       (3) 

 

the P value is determined according to local maximum down slope, this way the 

algorithm works better for with both divergent and convergent flows. The value of P at 

any given 3 by 3 window can be calculated using the following equation. 

 1.1)1,min(9.8 +×= eP       (4) 

where e is maximum local down slope and min(e,1) is a function that return the minimum 

between e and 1. This study considered this algorithm to demonstrate the suggested 

MapReduce approach. 

2.2 MapReduce and Hadoop 

MapReduce programming framework makes it easily to process in parallel massively 

large data on large number of computers. MapReduce works mainly through two 

functions, Map function and Reduce function; map function takes a set of key/value 

input and map it into zero or more set of key/value, the reduce function then takes each 

unique key and group its associated values into a unique key/value set (Dean and 

Ghemawat, 2008). Hadoop is an implementation of the MapReduce framework. 

2.3 MapReduce MFD  

The local flow of a cell is defined based on a 3 by 3 neighborhood in terms of possible 

flow interactions (in and outflow) between the center cell and its neighbors. The global 

flow can then be achieved by calculating the local flow of each cell by adding the inflow 

subtract the outflow. The suggested MapReduce can be conceptualized as flowing: 

 

• For each cell form construct a list l of nine elements, where the first element 

represents the center cell and the rest elements represents the eight neighbor cells. 

• Each element composed of (ID;dem;wh), where ID is unique ID for the cell, dem 

and wh are DEM and water height respectively at the cell. 

• l is stored in single line for the purpose of feeding MapReduce. 



• The first mapper Map1 apply MFD algorithm on each l and calculate the flow 

between the center cell and all the neighbor cells with down slope; and the first 

reducer Reduce1 aggregate the flows for each cell. 

• The second mapper Map2 writes each cell to the all eight neighbor cells; and the 

second reducer Reduce2 reconstruct l for each cell. 

• Repeating these processes by using the output of Reduce2 as an input to Map1 

for each time step. 

• The rainfall is added at the first MapReduce job and processed in by the first 

Reduce1 as an inflow for each cell. 

3. EXPERIMENTS AND RESULTS 

3.1 Cluster Setup 

Hadoop version 0.20.203 is installed on a cluster of four nodes. Each node has two Intel   

Xeon E5620 Processor, 1MB L2 Cache, 12M L3 Cache, 2.40 GHz speed, 24GB RAM, 

one 1Gbps Full Duplex NIC, and 400GB hard drive. Each processor has 4 cores, 8 

threads. All nodes are connected using a Gigabit switch. The operating system is Ubuntu 

10.04 LTS. 

3.2 Dataset 

Four mathematics surfaces are used to generate the input gridded DEM. These surfaces 

are recommended by Zhou et al [8] to evaluate the accuracy of flow algorithms, and it 

has been chosen as it represents the common train conditions, and in the same time it is 

easy to generate for the purpose of future comparison. 

3.3 Results 

To verify the proposed approach two experiments are carried out to execute one time 

step, cluster and data scaling. 

 

Nodes Ellips InvEllips Saddle Plane Ideal 

2 0.51 0.48 0.47 0.45 0.50 
3 0.40 0.39 0.40 0.37 0.33 
4 0.33 0.31 0.30 0.27 0.25 

 

Table 1. Performance for cluster scaling as ratio to single node for the 30 million cells 

dataset. 

 



30 Million

100

300

500

700

900

1100

1 2 3 4

Number of nodes

T
im
e
 (
S
e
c
o
n
d
s
)

Ellips

InvEllips

Saddle

Plane

 
Figure 1. The time compared to the number of server nodes for the 30 million cells 

dataset. 

Figure 1 and Table 1 show the result of the cluster scaling. Fig. 1 shows that the time 

decrease directly related to the number of nodes for the 30 million dataset. Table 1 

compares the achieved time decrease percentage to the theoretically ideal time; however 

the percentage of two node’s time is false indicator because the first node is running as a 

server worker node in same time.  

 

Data Scaling

0

100

200

300

400

500

600

1 3 5 7 10 15 20 30 40 50

Number of cells (Million)

T
im
e
 (
S
e
c
) Ellips

InvEllips

Saddle

Plane

 
Figure 2. The time of executing one timestamp for different datasets sizes for each 

surface, on a four node cluster setup. 

 

Fig. 2 shows the execution time for different data sizes on a four node cluster; the 

relatively flat graph between 1 and 20 million datasets indicates that the cluster is not 

fully utilized, as opposite to relatively constant increasing from 30 million and more. 



The results shows that the suggest approach is suitable for achieving a parallelized 

MFD on a MapReduce framework, and hence reduced execution time and large amount 

of data processing ability. 

2. References  
Ashby, S. F. and R. D. Falgout, 1996, A parallel multigrid preconditioned conjugate gradient algorithm for 

groundwater flow simulations. Nucl Sci Eng, 124:45-59.  

Dean, J. and Ghemawat, S, 2008, MapReduce : Simplified Data Processing on Large Clusters. (L. P. 

Daniel, Ed.)  Communications of the ACM, 51(1), 1–13. doi:10.1145/1327452.1327492 

Freeman, T. G., 1991, Calculating catchment area with divergent flow based on a regular grid. Computer 

and Geosciences, 17:413-422.  

Pilesjö, P. and Zhou, Q., 1997, Theoretical estimation of flow accumulation from a gridbased digital 

elevation model. Proceedings of GIS AM/FM ASIA’97 and Geoinformatics’97 Conference (Taipei), 

447-456.  

Qin C, Zhu A.-X, Pei T, li B,  Zhou C and Yang L, 2007, An adaptive approach to selecting a flow-

partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical 

Information Science, 21(4): 443-458.  

Quinn P, Beven K, Chevalier P and Planchon O, 1991, The prediction of hillslope flow paths for distributed 

hydrological modeling using digital terrain models.. Hydrological Processes, 5:59-79 

Tarboton D.G, 1997, A new method for the determination of flow directions and upslope areas in grid 

digital elevation models. Water Resources Research, 33(2): 309-319.  

Tian Y, Peters-Lidard C.D, Kumar S.V, Geiger J, Houser P.R, Eastman J.L, Dirmeyer P, Dotye B and  

Adams J, 2008, High-performance land surface modeling with a Linux cluster, Computers & 

Geosciences, 34:1492-1504.  

ZHOU Q and LIU X, 2002, Error assessment of grid-based flow routing algorithms used in hydrological 

models. International Journal of Geographical Information Science, 16(8): 819-842.  

 

 


