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Abstract 

Land use spatial allocation is a space optimization to improve the land use efficiency 

by distributing different land use types under the limits of regional land use structure 

according to specific planning objectives in spatial and temporal scales(Zhang et al. 

2012). It is very complex because it need to consider not only numerous spatial 

factors, attributes and constraints,but also multiple and often conflicting 

objectives(Chen et al. 2010 and Cao et al. 2011). Therefore providing an effective 

method for decision-makers to determine effects and costs of solutions in different 

scenarios becomes increasingly important(Loonen et al. 2007). 

Many optimizing methods have been used to deal with the land use spatial 

allocation problems. These methods can be classified into two categories: 

mathematical programming models and Heuristic methods. Mathematical 

programming models,e.g. linear programming model(Campbell et al. 1992 and Aerts 

et al. 2003) and mixed-integer programming model(Crohn et al. 1998), require that all 

variables, constraints, objectives have strict mathematical definition, while land use 

spatial allocation is a complicated geographic process which involves a large number 

of constraints, complex spatial relationships and game decision-making by 

stakeholders,making it difficult to meet the conditions of the mathematical 

programming models. Heuristic methods hardly have any restrictions regarding the 

formulation of the variables, constraints and objectives, and they are able to provide 

alternatives for decision-makers according to the optimization objectives(Loonen et al. 

2007). In many researches,heuristic algorithms such as genetic algorithm(Stewart et al. 

2004 and Cao et al. 2011), simulated annealing(Duh et al. 2007 and Sante-Riveira 

2008), particle swarm optimization(Masoomi et al. 2012 and Liu et al. 2012) 

combining with multi-objective optimization techniques,can generate diversified land 

use planning scenarios to provide decision support.These researches provide a new 

approach to solve land use spatial allocation problems(Cao et al. 2011). 

Ant colony optimization (ACO), which was first proposed by Dorigo et al. (1991), 

solve optimization problems,such as routing problems, assignment problems and 

traveling salesman problem, by simulating ants’ behaviours of selecting the best route 

from a food source to their nest.Li xia et al.(2009,2010,2011 and 2012) introduced 



improved ant colony optimization into the land use planning ,their results suggest that 

ACO is effective when it is applied to these problems. 

As a space optimization problem,land use spatial allocation have difficulty in 

articulating and specifying(Tong et al. 2012). Under this circumstances a land use 

spatial allocation model based on global search capability and information feedback 

mechanism of ant colony algorithm is proposed in this paper(fig. 1): Construction 

graph, a complete weighted graph made up of components which are composed of 

land units(N) and land use types(T), is built firstly for modeling land use spatial 

allocation problem.Secondly the behaviors of artificial ants(including component 

selection, pheromone updating and objective function) are improved so that the 

solution could be found quickly in the seraching space. Finally,ant colony generates 

optimized solutions by reconciling the conflicts between different planning objectives.  

 

Figure 1 Block diagram 

Our study focuses on Gaoqiao Town of Fuyang City in Zhejiang Province(fig. 2). 

The model maximizes land use suitability(equation 2),spatial compactness(equation 3) 

and unchanged rate(equation 4) based on a variety of constraints, e.g. optimal land use 

structure and land use policies, land use suitability and spatial compactness are 

normalized within the range [0, 1] using the equation 5.  

 



 

Figure 2 Location of the study area 
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The results suggest that this model can obtain the optimized land use spatial pattern 

in different sets of sub-objective weights and different development scenarios: with 

the constraint of  land use structure(table 1), land use types distribute more 

reasonable(table 3 and fig 3) by different sets of sub-objective weights(equation 1 and 

table 2);In different development scenarios(table 4),the model encourage areas of land 

use types in line with the development direction increase(fig 5 and table 5) to meet 

different development needs by setting relative dominance of different land use types 

Wdominance adding to the component selection probability Pij (equation 6). Table 1 

shows the influence of the relative dominance, The quantity of cropland increases 

with the relative moderate until reach the limit caused by land use suitability and 

neighborhood. 

Land Use 

Type 
Cropland Garden Forestland 

Ruarl 

Residential 

Areas 

Town Barren Others 

Area 1675.05 634.39 6662.96 773.49 233.69 26.73 401.58 

Land Units 

Count 
26758 10134 106437 12356 3733 427 6415 

Table 1 land use structure 



ID WS WC WU 

1 1.00 0.00 0.00 

2 0.00 1.00 0.00 

3 0.00 0.00 1.00 

4 0.34 0.33 0.33 

5 0.50 0.25 0.25 

6 0.25 0.50 0.25 

7 0.25 0.25 0.50 

Table 2 Different sets of sub-objective weights 

ID fsuitability f compactness f unchanged f 

1 0.8623 0.3241 0.9123 0.8623 

2 0.7422 0.4235 0.9087 0.4235 

3 0.7456 0.3306 0.9427 0.9427 

4 0.7841 0.3793 0.9397 0.701864 

5 0.8238 0.3656 0.9291 0.735575 

6 0.8174 0.3907 0.9247 0.630875 

7 0.8168 0.3746 0.9386 0.76715 

Table 3 Value of objectives with respect to different sets of sub-objective weights 

 
Figure 3 Overlay result:(a) The actual land use map; (b) the optimal land use spatial 

patterns obtained in weighted ID 5; (c) the distribution of changed units. 
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Figure 4 Changed units in different areas 
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Scenarios Cropland Garden Forestland 

Ruarl 

Residential 

Areas 

Town 

A 0.2 0.2 0.2 0.2 0.2 

B 0.4 0.15 0.15 0.15 0.15 

C 0.2 0.3 0.3 0.1 0.1 

D 0.35 0.1 0.1 0.35 0.1 

E 0.1 0.1 0.1 0.35 0.35 

Table 4 Different development scenarios 



 
Figure 5 the optimal land use spatial patterns obtained in different development 

scenarios 
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ial Areas 

Town WS WC WU 
f(0.34/0.33 

/0.33) 

A 26357 10343 106937 12356 3733 0.7834 0.7747 0.9182 0.852007 

B 27438 10135 106784 11832 3537 0.7794 0.7793 0.9164 0.852165 

C 26874 11358 107329 10536 3629 0.7941 0.7763 0.9207 0.856173 

D 27135 10145 105273 13597 3576 0.7752 0.776 0.9135 0.849648 

E 25536 10626 106012 13479 4073 0.7869 0.7757 0.9215 0.853527 

Table 5 Statistics of the optimal land use spatial patterns obtained in different 

development scenarios 

 

Figure 6 Changed units in different development scenarios 



ID 

Relative 

dominance of 

Cropland 

Cropland units 

count 

1 0.1 26295 

2 0.2 26593 

3 0.3 26742 

4 0.4 26918 

5 0.5 27322 

6 0.6 27487 

7 0.7 27452 

8 0.8 27466 

9 0.9 27453 

10 1 27446 

Table 6 Different sets of relative dominance of Cropland 
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