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1. Introduction  

Eigenvector spatial filtering (ESF) furnishes a methodology that accounts for spatial de-

pendency in georeferenced data (Griffith 2003), which, to date, has been the domain of 

spatial autoregressive (SAR) models. Its fundamental idea exploits the decomposition of 

a spatial variable into the following three components: trend, spatially structured random 

component (i.e., spatial stochastic signal), and random noise. Its aim is to separate spa-

tially structured random components from both trend and random noise, and, consequent-

ly, furnishes a sounder statistical inferential basis and useful visualization. In other words, 

ESF uses a set of synthetic proxy variables, which are extracted as eigenvectors from a 

spatial connectivity matrix that ties geographic objects together in space, and then adds 

these vectors as control variables to a model specification. These control variables identi-

fy and isolate the stochastic spatial dependencies among the georeferenced observations, 

thus allowing model building to proceed as if the observations are independent. Because 

ESF model specification is flexible, it can be utilized to describe variables following var-

ious types of distributions, including the Gaussian, Poisson, and binomial. Different ESF 

specifications have been compared with other specifications, such as the SAR (Getis and 

Griffith 2002, Tiefelsdorf and Griffith 2007, Thayn and Siminas 2012), auto-Poisson 

(Griffith 2002), and auto-logistic (Griffith 2004) ones.  

Although ESF has become more popular in addressing spatial autocorrelation (SA) la-

tent in georeferenced data (e.g., Hughes and Haran 2012), it faces two major computa-

tional challenges. Both the extraction of eigenvectors from an n-by-n modified geograph-

ic weights matrix, and the selection of a subset from the resulting set of n eigenvectors to 

construct a spatial filter, become increasingly challenging as n increases. In this paper, 

the selection of eigenvectors to construct ESF-based estimators in linear regression is 

investigated in terms of this latter computational issue. 

2. Eigenvector spatial filtering  

The ESF methodology utilizes an eigenfunction mathematical decomposition of the 

transformed spatial weights matrix, (I - 11
T
/n)C(I - 11

T
/n), which appears in the 

numerator of the Moran Coefficient (MC), where I is the identity matrix, 1 is an n-by-1 

vector of ones, C is a spatial weights matrix, and superscript T denotes the matrix 

transpose operator. This decomposition generates n eigenvalues, λ={λ1, λ2, …, λn}, and n 

corresponding mutually orthogonal and uncorrelated (Griffith 2000) eigenvectors, 

E={E1, E2, …, En}. Mapping each eigenvector across the original n areal units associated 



with C portrays a distinct map pattern whose MC value is directly associated to its 

corresponding eigenvalue: i.e., MCj = λj ·n/1
T
C1, for Ej (Tiefelsdorf and Boots 1995, 

Griffith 1996). Furthermore, the feasible range of MC for a given spatial tessellation is 

determined by λ1 and λn (de Jong et al., 1984). Hence, the eigenvectors furnish distinct 

map pattern descriptions of latent SA in georeferenced variables.  

The ESF methodology accounts for SA with a linear combination of a subset of the n 

eigenvectors. The pure ESF linear regression model specification may be written as 

εβEY     Ek  , where Ek is an n-by-K matrix containing K eigenvectors, βE is the 

corresponding vector of regression parameters, and  2

εσ,N~ I0ε  is an n-by-1 error vector 

whose elements are iid normal random variates. Because the linear combination of the 

eigenvectors, EkβE, accounts for SA, the ESF linear regression specification does not 

suffer from spatially autocorrelated residuals. 

3. Computational intensities in eigenvector spatial filtering  

Computational intensity of the ESF methodology arises in two ways. First, the extraction 

of eigenvectors from an n-by-n modified geographic weights matrix is computationally 

intensive. Specially, the extraction of eigenvectors often requires substantial 

computations as n increases, and has an upper limit that depends upon computer 

resources. For regular square tessellations such as remotely sensed images, eigenvectors 

can be efficiently generated with equations that require the pixel location in an image 

(Griffith 2000). Also, an algorithm for sparse matrices can improve the computation of 

eigenvector generation (Pace et al. 2011).  

Second, the selection of a subset from the resulting set of n eigenvectors to construct a 

spatial filter, Ek is computationally intensive, and involves two steps. In the first step, a 

candidate set of eigenvectors, which is a noticeably smaller subset (i.e., m << n) of the 

entire set of eigenvectors, can be demarcated based upon various criteria. One such 

criterion employs a threshold minimum MC of 0.25, which relates to roughly 5% of the 

variance in a response variable being attributable to positive SA. Another criterion 

devised by Griffith and Chun (2009) utilizes the level of SA detected in a response 

variable, Y, or residuals when a specification contains covariates, and may be 

summarized as follows: 

 

MCj )e(12.88052.9970  MCz 0.2525  0.6606
 ,  (1) 

 

where zMC denotes the z-score of the MC for the response variable Y. Equation (1) 

indicates that as positive SA decreases, the number of eigenvectors in a candidate set 

tends to decrease, with the inclusion of fewer and fewer eigenvectors. But equation (1) is 

based upon only a 20-by-20 square tessellation, for which n = 400. 

In the second step, a smaller set of eigenvectors can be identified from a candidate set 

using an easily implementable standard forward stepwise regression selection technique. 

One way to select eigenvectors is to maximize model fit at each step employing statistical 

significance (e.g., invoking a 10% level). Another way to select eigenvectors is to 

minimize residual SA at each step until the MC   E(MC), the expected value of the MC. 



4. Simulation experiment results 

The simulation experimental design seeks to assess the stepwise selection of eigenvectors 

to construct an eigenvector spatial filter. The data generating mechanism used is an ei-

genvector spatial filter model without covariates. The experiment steps are as follows: (1) 

generate n iid random variables; (2) discard any sample whose normality diagnostic sta-

tistic suggests rejection of the null hypothesis; (3) randomly permute the n generated val-

ues until their MC value falls into the interval (-1/(n-1)-0.01, -1/(n-1)+0.01)—i.e., failure 

to reject the null hypothesis; (4) inbed SA by summing randomly selected eigenvectors 

with randomly selected coefficients, and adding a iid variable to each sum; and, (5) repli-

cate the experiment 10,000 times for each n. 

The output of interest is the number of superfluous and missed eigenvectors via the se-

lection process when constructing an eigenvector spatial filter. Additional analyses ad-

dress the issue of multiple testing associated with forward selection stepwise regression. 

An initial experiment indicates that in the presence of zero SA, the Bonferroni adjustment 

holds. The simulation experiments summarized in this paper assess this finding for the 

full range of positive SA. 

5. Implications  

The ESF method potentially is plagued by common problems associated with stepwise 

regression techniques. Is the correct set of eigenvectors selected? Are superfluous eigen-

vectors selected? Are eigenvectors not selected that should be selected? Are results bi-

ased? How does ESF relate to the multiple testing problem? Fortunately, ESF avoids 

complications affiliated with multicollinearity because the eigenvectors are mutually or-

thogonal and uncorrelated. This paper contributes to a better understanding of the statisti-

cal basis supporting ESF through geo-computation. 
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