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1. Introduction  

Eigenvector spatial filtering (ESF) (Griffith 2000; Griffith 2003; Getis and Griffith, 2002) 

employs traditional regression techniques, while ensuring that regression residuals behave 

according to the traditional model assumption of their containing no spatial autocorrelation (SA). 

ESF uses a set of spatial proxy variables, which usually are extracted as eigenvectors from an 

underlying spatial relationship matrix that ties the spatial objects together, and adds these vectors 

as control variables in a model. These eigenvectors, which are extracted from a posited spatial 

relationship matrix, exhibit distinctive spatial map patterns with an associated level of SA. These 

control variables identify and isolate the stochastic spatial dependencies among observations, 

thus allowing model building to proceed as if the observations are independent.  

Although the ESF model specification is flexible, and has become more popular in 

addressing SA latent in georeferenced data (e.g., Thany and Simanis 2012), it faces two major 

computational challenges. The first lies in computing the eigenvectors from an n-by-n modified 

spatial weights matrix, which often requires substantial computational resources as n increases. 

For example, eigenvector generation for a high resolution remotely sensed image is 

computationally challenging, although an algorithm for sparse matrices can improve the 

computation of the eigenvectors (Pace et al. 2011). The second computational challenge lies in 

the selection of a subset from the resulting set of n eigenvectors to construct a spatial filter, 

which becomes increasingly challenging as n increases. The selection of eigenvectors is 

conducted through two stages. First, a candidate set is identified; second, a final set is selected 

from the candidate set with stepwise regression techniques. In this second step, a forward 

stepwise regression technique can select significant eigenvectors (say at the 10% level) at each 

step, continually increasing R
2
 until no significant vectors remain outside of the regression 

equation. Alternatively, the forward stepwise regression technique can select eigenvectos at each 

step that minimize residual SA, continuing to do so until the residual MC   E(MC), the expected 

value of the MC. 

This paper focuses on formalating an equation for identifying the candidate set of 

eigenvectors from which ones are selected to construct an eigenvector spatial filter. This 

procedure should reduce the size of an original candidate eigenvector set, making the 

construction of an eigenvector spatil filter less computational intensity in the stepwise regression 

selection stage.  



2. Eigenvector spatial filtering 

The ESF methodology utilizes the properties of eigenvectors and corresponding eigenvalues of 

the transformed spatial weights matrix (I - 11
T
/n)C(I - 11

T
/n), where I is an identity matrix, 1 is 

an n-by-1 vector of ones, C is a spatial weights matrix, and superscript T denotes the matrix 

transpose operator. Studies, including Tiefelsdorf and Boots (1995) and Griffith (1996), show 

that its n mutually orthogonal and uncorrelated (Griffith 2000) eigenvectors, E={E1, E2, …, En}, 

and n corresponding eigenvalues, λ={λ1, λ2, …, λn}, relate to SA. Important proproties of these 

vectors include: 1) they furnish distinct map pattern descriptions of latent spatial autocorrealtion 

in georeferenced variables, and 2) the eigenvalues index the level of SA of a map pattern that is 

generated when the corresponding eigenevecotor is mapped on the given tessellation. That is, the 

Moran Coefficience (MC) of the map pattern produced by Ej is MCj = λj ·n/1
T
C1.  

The ESF linear regression model specification can be written as εβEXβY     Ek  , where Ek is 

an n-by-K matrix containing K eigenvectors, βE is the corresponding vector of regression 

parameters, and  2

εσ,N~ I0ε  is an n-by-1 error vector whose elements are iid normal random 

variates. The selection of K eigenvectors to construct a spatial filter, which is the linear 

combination of the eigenvectors (EkβE), is one geo-computational feature of ESF.  

Griffith and Chun (2009) suggest a criterion based upon the level of SA in a variable, rather 

than using an arbitrary relative MC value, to identify a finely tuned candidate set of eigenvectors. 

They developed the following equation to achieve this goal:  

 

MCj )e(12.88052.9970  MCz 0.2525  0.6606
 ,      (1) 

         

where,     denotes the Z score of the MC for residuals from a stepwise regression. This 

equation suggest that the size of the candidate set inreasing as the degree of SA increases. It was 

constructed with a simulation experiment unilizing an 20-by-20 regular square tessellation (n = 

400). Accordingly, it needs to be generalized for n. 

3. Simulation design and results 

A simulation experiment was designed to uncover an equation for identifying the threshold MC 

value needed to identify a candidate set of eigenvectors. This involves calculating different zMCs 

based on different levels of SA, and relating them to different threshold values. The steps of this 

experiment are: (1) generate 1,000 pseudo-random numbers with different SA level of   values, 

{0.1, 0.2, … , 0.9, 0.95}, using a standard simultaneous autoregressive model (SAR) model; (2) 

compile candidate sets for 10 different threshold values {0.015, 0.1, 0.2, … , 0.9} (these values 

determine which threshold values have the highest R
2
s for the model spatial filters; (3) select 

eigenvectors for spatial fiter constructon from the candidates sets using stepwise regression (the 

dependent variables are the 1,000 pseudo-random numbers in which SA is embedded with an 

SAR model, and the independent variables are sets of candidate eigenvectors); and, (4) calculate 

zMC for the regression residuals (a histogram of 1,000 zMC values establishes a suitable threshold 

value). 

The result of interest is a specific threshold value that gives the most efficient and accurate 

candidate set of eigenvectors for each pair of   and  . Table 1 reports selected simulation 

experimental results. Threshold values tend to decrease asn   values increase and   decreases. 

The range of threshold values is from 0.3 to 0.8 in this case.  

 



  value 
threshold value 

10-by-10 20-by-20 30-by-30 40-by-40 50-by-50 

0.1 0.6 0.8 0.8 0.8 0.8 

0.2 0.5 0.7 0.7 0.7 0.7 

0.3 0.4 0.6 0.6 0.6 0.6 

0.4 0.4 0.5 0.5 0.5 0.5 

0.5 0.3 0.5 0.5 0.5 0.5 

0.6 0.3 0.4 0.4 0.4 0.4 

0.7 0.3 0.4 0.4 0.4 0.4 

0.8 0.3 0.4 0.4 0.4 0.4 

0.9 0.3 0.3 0.4 0.4 0.4 

0.95 0.3 0.3 0.4 0.4 0.4 

 

Table 1. Simulation results for threshold values to construct an eigenvector spatial filter 
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Figure 1. Z-scores of MC for resduals. (a) threshold value = 0.4,   = 0.1, and a 10-by-10 regular 

square tessellation (b) threshold value = 0.4,   = 0.5, and a 50-by-50 regular square tessellation 

(c) resduals for value = 0.5,   = 0.5, and a 50-by-50 regular square tessellation 

 

 

Additonal experiments are required to establish more precise threshold values, partly because 

the search grid used here is too coarse. Figure 1a shows the threshold value for a 10-by-10 

regular square tessellation with ρ = 0.1. The mean zMC is close to 0; however, the threshold value 

for a 50-by-50 regular square tessellation with ρ = 0.5 (Figure 1b and 1c) is not clear, and lies 

somewhere between 0.4 and 0.5. 



4. Implications 

By identifying accurate threshold values, ESF will become more efficient and less numerically 

intensive, supporting its use with much larger datasets. This paper contributes to this goal by 

extending equation (1) to a wider range of n values. 
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