
A MPI Parallel Algorithm for the Maximum Flow Problem

JIANG Jincheng
1
 WU Lixin

2
,

1Institution of Spatial Information Science and Technology, Academy of Disaster Reduction and Emergency Management, Beijing

Normal University, Beijing 100875, China

Email: jiangjincheng0305@126.com

2Institution of Spatial Information Science and Technology, Academy of Disaster Reduction and Emergency Management, Beijing

Normal University, Beijing 100875, China
Email: awulixin@263.net

1. Introduction

Network analysis remains one of the most significant and persistent research and

application areas in GIS
[1]

. The problem of computing a maximum flow in network

analysis is a fundamental combinatorial problem, with many applications in

transportation planning, operations research and resource scheduling, i.e. Numerous

serial max-flow algorithms have been developed over the past 50 years to improve

complexity bounds. Andrew V. Goldberg
[2]

summarized the development of the

algorithm in 1998. In general, there are two principal categories for solving the maximum

problem: augmenting path algorithm
 [3-5]

 and push-relabel algorithm
[6-9]

. The hipr

algorithm, a highest-level variant of the push-relabel algorithm, was found to be the one

with best performance both in theory and practice
 [8] [9]

, the complexity has been

improved to 2O()n m . However, the efficiency to solve the maximum flow problem for

large-scale network still remains the bottlenecks in practical application.

In recent years, parallel computing has become an effective solution to improve

computation speed. While there are few improvements in parallel algorithm for max-flow

problem utilizing parallel machines. Most existing parallel algorithms
[10-13]

 are fine-

grained parallelism, which need too much interconnection or communication, leading to

low speed-up. Consequently, coarse-grained parallelization has its unique advantages to

reduce the times of exchanging messages.

In this paper, a parallel algorithm with MPI (Message Passing Interface) for max-flow

problem is presented. Assuming a graph of n nodes and m arcs is partitioned into several

regions. The flow inside each region is pushed to its boundary through executing hipr

algorithm iteratively, and a special method is given to discharge the flow out of the

region, reducing message passing by three improvements which are different from

common push-relabel algorithm. The features of MPI parallel algorithm include: 1) we

do not try to calculate the distances between boundary nodes and sink node directly, but

by a distance function which compute the distance from region to sink node, and the

relationship between boundary node and its adjacent regions; 2) the method of discharge

flow out of region various with the flow on boundary arcs, with the state of nodes in

adjacent regions and with the distance of region and sink node; 3) we do not try to push

the flow along the path which need too much message passing. We tested our parallel

algorithm on several types of networks used in the first DIMACS Implementation

Challenge, and found that the parallel algorithm has very good acceleration ratio as to

sequential algorithm for most types of sparse networks, even beyond our expectation.

http://dict.youdao.com/w/consequently/
http://dict.youdao.com/w/common/
http://dict.youdao.com/w/directly/
http://dict.youdao.com/w/expectation/

2. Methodology

2.1 Network Partition

As the complexity of the hipr algorithm we used in each region is 2O()n m , where n is

the number of nodes and m is the number of arcs, the computing time mainly depends on

n, not m. We partition the network to several regions with approximates number of nodes

by BFS (Breadth First Search) starting from sink node. The arcs connecting two regions

are taken as boundary arcs, the nodes of boundary arcs are defined as boundary nodes.

s

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

t

(20,0)

(20,0)

(20,0)

(10,0)

(5,0)

(10,0)

(5,0)

(6,0)

(8,0)

(9,0)

(5,0)

(5,0)

(18,0)

(12,0)

(8,0)
(10,0)

(10,0)
(15,0)

(7,0)

(6,5) (2,0)

(2,0)
(6,0)

(8,0)

(30,0)

N3 N2 N1

Figure 1. An example of network partition.

2.2 Push Flow Iteratively
Three steps are executed iteratively to push flow to sink until there are no more active

nodes (the amount of in-flow larger than out-flow) in all regions except for the source

node s and the sink node t.

⑴ label boundary nodes.

There are three types of labels for boundary nodes to choose, the type-I and type-II

have chance to push the flow to t, while type-III has no chance any more. The method of

labelling boundary nodes is as follow: if there are no feasible boundary out-arcs for node

v1 to push the flow to node v2 (v2 belongs to different region and the label of v2 is not

type-III), then the label of v1 is set to type-III. We distinguish the type-I from the type-II

by the distance from boundary nodes to t, the label of node v1 with short distance is set to

type-I, otherwise to type-II.

s

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

t

(20,20)

(20,20)

(20,20)

(10,10)

(5,5)

(10,10)

(5,5)

(6,0)

(8,8)

(9,9)

(5,5)

(5,0)

(18,15)

(12,12)

(8,0)
(10,9)

(10,0)
(15,12)

(7,0)

(6,5) (2,2)

(2,2)
(6,6)

(8,2)

(30,21)

N3 N2 N1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

Figure 2. The way to label boundary nodes

As in figure 2, the label of node v1 will be set to type-III, v7 to type-I, and v8 to type-II,

respectively.

⑵ Push flow inside region to boundary

http://dict.youdao.com/w/execute/
http://dict.youdao.com/w/feasible/
http://dict.youdao.com/w/otherwise/

The hipr algorithm is used to push the flow inside region to its boundary, but the

features of our method is pushing flow hierarchically, i.e., the flow is pushed to the type-I

nodes, then to the type-II nodes and to the type-III nodes lastly.

⑶ discharge flow out of region

The method of discharging the flow in boundary nodes out of the region is similar to

the way as label boundary nodes operation. The flow in boundary nodes of type-I and

type-II label is pushed along the boundary out-arcs found in label boundary nodes

operation. We push the flow in the type-III nodes along the boundary in-arcs.

2.3 Region Merger
To reduce the cost of message passing, some feasible paths cross boundary are ignored.

So it is necessary to judge whether optimal solution has been obtained through BFS from

t. If not, all regions will be merged to a whole network with the help of MPI, and then the

remaining work will be done in sequences.

3. Experiments
We tested the MPI parallel algorithm on a graphic workstation, which has four 64 bit

Quad-Core processors running at 2.4 GHz with 64 GB memory. Visual Studio 2010 is

used for coding to generate the executable file. Four types of networks, which were used

in the first DIMACS Implementation Challenge and used by many existing max-flow

algorithms, were applied to test the performance. The testing result is shown in figure 3:

a) AK problem b) genrmf-wide problem

c) Washington-Line-Moderate problem d) Washington-RLG-Long problem

Figure 3. MPI performance on different problems

4 Conclusion
We have proposed a new distributed algorithm with MPI for maximum flow problem for

large-scale sparse graph. Several effective methods are used to reduce message exchange

and additional calculation is added to make sure the optimal solution can be obtained.

http://dict.youdao.com/w/graphic/
http://dict.youdao.com/w/workstation/

Experimental tests on real instances shows that the MPI parallel algorithm performs good

parallel efficiency, and sometimes even beyond 100%, the reason is that many

unnecessary operations happened in boundary regions are ignored.

 The parallel algorithm presented in this paper is of great significance for many

transportation and utility applications based on GIS. Especially in the emergency

situation, our parallel algorithm plays an important role for resource scheduling.

5. References
[1] Kevin M. Curtin, 2007, Network Analysis in Geographic Information Science: Review, Assessment, and

Projections, CaGIS. 34: 103–111.

[2] A V Goldberg, 1998, Recent developments in maximum flow algorithms, Lecture Notes in Computer

Science, 1432: 1-10.

[3] Ford, Jr. L. R., D. R. Fulkerson. 1957. A simple algorithm for finding maximal network flows and an

application to the Hitchcock problem. Canad. J. Math. 9:210–218.

[4] Dinic E. A. 1970. Algorithm for solution of a problem of maximal flow in a network with power estimation. Soviet

Math Doklady, 11: 1277-1280.

[5] Karzanov A. V. 1974. Determining the maximal flow in a network with a method of preflows. Soviet

Math. Dokl, 15: 434-437.

[6] J. Edmonds, R.M. Karp, 1972, Theoretical improvements in algorithmic efficiency for network flow

problems. Journal of the ACM. 19(2): 248-264.

[7] Goldberg, A. V., R. E. Tarjan. 1988. A new approach to the maximum flow problem. Proceedings of

the eighteenth annual ACM symposium on Theory of computing, New York, NY, USA, 136-146.

[8] Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications.

Prentice-Hall, Englewood Cliffs, NJ.

[9] Goldberg, A. V., B. V. Cherkassky, 1997, On implementing the push-relabel method for the maximum

flow problem. Algorithmica, 19(4): 390-410.

[10] A. Iossa R. Cerulli, M. Gentili, 2008. Efficient Preflow Push Algorithms. Computers & Oper. Res,

35(8): 2694–2708.

[11] G. C. Caragea and U. Vishkin, 2011, Brief announcement: better speedups for parallel max-flow. In

Proceedings of the 23rd ACM symposium on Parallelism in algorithms and architectures, New

York, NY, USA, 131-134.

[12] B. Hong and Z. He, 2011. An asynchronous multithreaded algorithm for the maximum network flow

problem with nonblocking global relabeling heuristic. IEEE Transactions on Parallel and Distributed

Systems, 22(6):1025–1033.

[13] Mujahed Eleyat, Dag Haugland, Magnus Lie Hetland, 2012, Parallel algorithms for the maximum flow

problem with minimum lot sizes, Operations Research Proceedings 2012, 83-88.

http://dict.youdao.com/w/ignore/
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/722

