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1. Introduction

The expressions of directional heterogeneity activation function (DHAF) and
directional heterogeneity function (DHF) were defined at first, and a classification of
spatial heterogeneity based on these two functions was proposed. Then the existing
spatial interpolation approaches for different heterogeneity classification were
discussed. Last but not least, the principle and application of structural analysis of
directionally discrete heterogeneity (DDH) based on geometrical characteristics was
put forward in detail.
All the study was supposed to be limited to 2-dimension space.

2. Heterogeneity Classification of Spatial Data

DHAF and DHF can be defined in equation 1 and equation 2, respectively.
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where 2 is an arbitrary spatial direction of data sample point and AN(y(A%), D)) =1.

According to the value of 47, the heterogeneities of spatial data can be classified
into 3 groups. For all the sample points,
1) If M =2n , the heterogeneity is directionally continuous. In this case, DHAF

must be uniformly continuous in [, — 7,0, +r].



i1) If 4/ =0, DDH can be found.
ii1) If the equation 0 < A/ <27 can be obtained by one or more points, the
heterogeneity will be neither continuous nor discrete in these points.

3. Structural Analysis of Spatial Data (Review)

Spatial Data with a directionally continuous heterogeneity has been studied
sufficiently. Traditional Kriging approaches, on the assumption that semivariogram is
valid in any arbitrary angle, have been efficiently applied in many fields, such as
spatial interpolation of soil moisture. Nevertheless, what has not been adequately
addressed is the structural analysis of DDH. The latest advances are as follows:

Using LVA (Locally Varying Anisotropy) Field Model. Subdividing the research
region into sub-regions as required, and calculating the major direction of anisotropy
in each sub-region, the LVA can generate the heterogeneity distribution pattern. One
method is Local Anisotropy Kriging (LAK, Chris et al. 2005). LAK is an iterative
approach which calculates the gradient algorithm and kriging with local anisotropy
repeatedly, and condition for the termination is that change of estimate E is less than a
preset value. Another way to employ LVA is searching an optimal point-to-point
route with the maximum attainable covariance, following a solution of kriging
equations (Boisvert et al. 2009). Although Kriging with LVA can simulate the
essential characters of spatial data, points excluded from research region are necessary
in estimated process, which, however, may not be obtained in DDH.

Using stream distance and regarding flow as weight (Ver Hoef et al. 2006). These
“compound Euclidean distances” constitute semivariograms, and might be worthless
except spatial statistics for streams and rivers.

Using Non-Euclidean distance measures in semivariograms with the concept of
isometric embedding (Curriero 2006). This method cannot describe the characteristics
of study area accurately unless taking advantage of exponential covariance function.

4. Structural Analysis of DDH

A suggestion that research region with DDH displays a series of geometrical
characteristics conspicuously is sound. It is therefore principal to analyse the
geometrical characteristics quantitatively when semivariogram in such area is about to
be calculated.

4.1 Analysis of Geometrical Characteristics

The route between two sample points can be counted as a curve C with a twice
differentiable subsection function. In each section, the curve’s geometrical

characteristics comprise arc length ¢, curvature x and torsion 7 , which must be

introduced entirely when considering the range. if y = y(¢,x,7,A%) stands for a

quantification of geometrical characteristics, semivariogram would be defined as



y(4) =ylAs,x,T,A)]=y[c(1+ x)]. (3)

Consequently the main issue is how to derive a analytic formula of y .

This problem can be solved separately. Total curvature, the curvilinear integral
with respect to curvature pluses sum of angle between consecutive tangents, illustrates
an accumulation of degree of crook, but relates to the length of arc. Therefore, the
new concept “relative total curvature” (RTC), a ratio of total curvature of subsection

¢, to the one of cylinder helix, was proposed. The expression of cylinder helix is
given in equation 4,
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where A/ and g, are straightaway distance and arc length between the two ends of
¢, respectively. In view of its arc length, together with projected length in the vector

A/, , are calculated as same as ¢,’s, RTC is found to be
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where «k,; and 2’ represent the Lagrange mean curvature value of ¢ and

cylinder helix respectively, so RTC has nothing to do with the length of arc.
The same method can be used to define a relative angle between consecutive

tangents as 0° = % , and relative total torsion equals to zero when it’s confined to

2-dimensional space. So it is reasonable that replacing y with the equation 6,
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4.2 Experimental Semivariogram

Lemma 1. Let the sample points {«, |#, =u, u,---,u, , u,=u+Ak be apartition

set of (', then S(g) , parametric equations based on arc length determined by

interpolation of sample points, exists eternally. Here, the equations should satisfy

some conditions as follows:
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2) if Ag =max(s,) >0, Es,', the Lagrange mean curvature value of S(5) ,
uniformly converges to K. Additionally, 6, , angle between consecutive tangents

determined by S, ,(s) and S.(g), uniformly convergesto 0,

It can be proved with the “not-a-knot” cubic spline interpolation (de Boor 2001).
Based on this theorem, some conclusions will be drawn:

1) Quantification of geometrical characteristics could be obtained by

interpolation as long as sampling appropriately.

i) if Ag=max(g,) >0, K, RTCof S5(c), will uniformly converges to K.

It is therefore reasonable that replacing K° with K7.

As a result, the experimental semivariogram of DDH will be expressed as
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where /' = Zg q1+2 ],and {m} are solutions of equations consisting of
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the “not-a-knot” boundary conditions (Bica 2012, Su et al. 1980).

4.3 Example

Without any intersections, there is a significant curvilinear characteristic in the
Qinghai-Tibetan Railway, making it possible and pretty easy to analyze DDH.

Three kinds of data types, recorded at 33 monitor locations scattered in roadbed,
were input parameters passed to equation 7: embankment settlement data, longitude
and latitude, railway mileage. Fig. 1 displays semivariogram utilizing exponential
model with a range of 35.47km, a sill of 0.42km and a nugget of 0.20km.
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Figure 1. Semivariogram for the embankment settlement data



4.4 Conclusions and Discussions

Improving and supplementing the spatial heterogeneity, the above technique should
still confront with and overcome some problems. For instance, assessing spatial
uncertainty, 3D analysis, tolerances and nesting other semivariogram models. In
addition, research on spatial interpolation based on geometry characteristics should be
continued in depth.
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