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Abstract 

Land use is considered as a major interface between socio-economic and 

environmental processes (Letourneau et al. 2012). Land use occurs in local places, 

considered a local environmental issue generally, but it is becoming a force of global 

important. Activities of land use have transformed a large proportion of the planet’s 

land surface, mainly for acquisition of natural resources to meet immediate human 

needs at the expense of environmental conditions (Foley et al. 2005). Since the “land 

use and cover change” (LUCC) science plan was proposed together, land-use change 

has become the front and hot point task of the global change and many projects and 

studies have focused on LUCC (Turner et al. 1995, Lambin et al. 1999, Lambin et al. 

2001). For recent decades, researchers have tried to simulate land-use changes at 

different temporal and spatial scales, with different geographical models and for 

different purposes (Li et al. 2002a, Matthews et al. 2007, Verburg et al. 2008, 

Schweitzer et al. 2011, Verburg et al. 2011). The favored techniques for implementing 

model of spatial dynamics is cellular automata (CA) (White et al. 2000). 

Cellular automata is dynamic model originally introduced by Ulam and Von 

Neumann in the 1940s as a possible idealization of biological systems (Neumann 1966). 

However, CA was not considered as a modelling paradigm until Wolfram presented his 

contributions to CA modelling (Wolfram 1983, Wolfram 1984). CA has been linked to 

the work of spatial diffusion and segregation modelling approaches (Hägerstrand et al. 

1967, Schelling 1971). In 1979 Waldo Tobler first introduced CA into the scope of 

geographical modelling (Tobler 1979). CA, a bottom-up approach, can well capture 

complex spatially distributed processes and provide insights into a wide variety of local 

behaviors and global patterns, in addition CA can be well integrated and programmed 



 

 

in raster-based geographic information system (GIS) environments (Wolfram 1984, 

Kocabas et al. 2006). Due to the advantages of CA in geographical spatiotemporal 

dynamics, CA models have been increasingly used for simulating various geographical 

phenomena, especially used in land-use/land-cover change (Jenerette et al. 2001, Li et 

al. 2002b, Wu et al. 2002, Maria de Almeida et al. 2003, Menard et al. 2007) and in 

modelling urban spatial dynamics (Clarke et al. 1997, Couclelis 1997, Batty et al. 1999, 

Li et al. 2000, Li et al. 2002b). 

A basic CA essentially consists of five components: a grid space on which the 

model acts; cell states in the grid space; transition rules that determine the spatial 

dynamic process; a neighborhood that influences the central cell, and time steps (White 

et al. 2000). We can model the spatial complexity and dynamics of land use change 

with these basic element of the CA model design. With more than 70 years development, 

CA model has been improved continuously by scholars aimed at developing the 

technique as one which can be applied to practical problems, mainly from three aspects 

as follows: (1) the scale sensitivity of CA model to grid space extent, size of cells and 

neighborhood; (2) the impact of cell type and neighborhood type on the behavior of CA 

model; (3) coupling other models or methods to make the transition rules more 

automatic and realistic. Geographical CA, up to now, has got very great improvement 

in scale sensitivity, the types of cell and neighborhood, and transition rules. However 

there are still some deficiencies to be solved, such as, most researchers focused on 

discussing which factor results in what impact in scale, but few studies were carried out 

aimed to eliminate or minimize the scale sensitivity; And some new-type and complex 

cells and neighborhoods were difficulty in popularization due to their pertinence and 

complexity. As an example, the neighborhood space may be defined differently for each 

cell, a relaxation is widely acknowledged, but seldom implemented (Sante et al. 2010). 

There is not a uniform method for determining distance-weight until now, when the 

distance-decay is considered in neighborhood. Besides, the quantity of cells is the only 

factor, which is taken as the measurement of the influence of the neighborhood, in 

current research on geographical CA. However, the spatial distribution characteristics 

are rarely taken into consideration, e.g. spatial compactness, in spite of their importance 

and universality in the evolution of complex geographical phenomena. 

In this paper we tried to improve the two-dimensional raster-based CA by 

proposing compound-type neighborhood and drawing the spatial compactness factor 

into neighborhood. Compound-type neighborhood with the multi-level weights 

considers the distance-decay effect, and the weight-determining is implicitly included 

in neighborhood computation (see fig. 1). Since the explicit weight assignment is not  



 

 

 

Figure 1. Distance-decay effect 

 

required, it reduces the interference of artificial element and has good scalability. In 

addition, the spatial compactness factor is introduced into the neighborhood impact 

assessment, which enhances the representation of spatial characteristics in CA model 

and may provide a more realistic simulation of LUCC. (1)Compound-type 

neighborhood based on Moore neighborhood consists of influence neighborhood and 

computation neighborhood (see fig. 2), which depicted in mathematical equation 1: 

𝛺 = 𝛺5×5⋂{𝛺3×3 × ([𝐿 𝐶 𝑅] × [
𝑇
𝑀
𝐵
])}               (1) 

 

Figure 2. Structure of the compound-type neighborhood 

Influence neighborhood represents the local extent of the adjacent cells impacting on 

the transition of center cell, it is a (2n-1)*(2n-1) Moore neighborhood with the side 

length of computation neighborhood as radius; and computation neighborhood is an 

n*n Moore neighborhood, which is used directly for counting the adjacent cells. 

According to the relative position of the center cell in the computation neighborhood, 

the influence neighborhood is divided into n2 computation neighborhoods. The center 

cell can be localized anywhere in computation neighborhood because of its non-

symmetrical structure, and the development state of the influence neighborhood 

depends on the statistical values of all computation neighborhood. In this paper we 

employed 5*5 Moore and 3*3 Moore as the influence neighborhood and computation 



 

 

neighborhood respectively. (2) The spatial compactness factor reflects the spatial 

distribution characteristics of different land use types in influence neighborhood, the 

comprehensive effect of neighborhood is determined by both quantity and spatial 

compactness (see fig. 3), which breaks the tradition CA model that takes quantity of  

 

Figure 3. Determined both by quantity and spatial compactness 

cells as the only calibration for development of neighborhood. In practice situation the 

effect of the spatial compactness on the land use change is not a simple positive 

correlation or negative correlation, but the complicated nonlinear relationship. For 

instance, it is very possible to have different two development patterns during the urban 

sprawl: the spatial compactness is in favor of urban development when its value is 

below than a certain value γ; while if the spatial compactness is higher than value γ it 

will show the opposite situation, the transition probability of construction land 

decreased with the increase of spatial compactness, which is the result of the shortage 

of land resource and the saturation of building density. BP neural network is employed 

to obtain the transition rules of CA model due to its ability of effectively representing 

these nonlinear relationships between spatial compactness and land dynamics, and it 

does not require the researchers thoroughly understanding the complex relationship 

between inner neurons, which greatly simplifies the rule establishment during modeling 

geographical CA. In the paper we verified the improved CA model by taking the 4 

districts of Wuhan (WuChang, HongShan, QingShan, and JiangXia located in south of 

Changjiang River) as an example. By interpreting three remote sense images of the 

study area (2000ETM, 2005ETM, and 2010ETM), basic data about area of the Land 

Use/Cover Type of the basin in the last three periods are extracted, and combining with 

other GIS data, such as DEM, transportation, the basic farmland protection zone, agro 

type, and land use planning, we have modeled the geographical CA and simulated the 

land use change (see fig 4.). By comparing with the tradition CA through Kappa and 

Moore indices, the improved CA shows its superiority and the results indicate that the 

improved CA is more precise in simulation and can better reflect the spatial distribution 

features of land use. 



 

 

  

             (a) 2000 actual                           (b) 2005 actual   

  

             (c) 2010 actual                         (d) 2010 Simulation   

Figure 4. Results of the land use dynamics 
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