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Introduction 
 

Categorical soil maps are widely used for resources and environmental management. Because the spatial 
distribution of soils may change due to various reasons, existing soil maps may be too outdated to reflect 
current field soil distributions; thus, periodical map update is necessary to meet the requirements of 
applications. However, large-scale detailed soil survey is too costly to carry out frequently for generating 
new high-quality maps. If a soil map is of sufficient quality and appropriately scaled, updating may not 
require a new full-coverage survey for revising the map because the types of soils at most places may not 
have changes. Consequently, we may update a legacy soil map with only limited new survey data. Recently, 
a Bayesian Markov chain random field (MCRF) approach was proposed for simulating categorical fields (Li, 
2007). The MCRF sequential simulation (MCSS) algorithm (Li and Zhang, 2007) was further extended into 
a MCRF sequential co-simulation (Co-MCSS) algorithm. In this study, Co-MCSS was used to incorporate 
legacy map data through co-simulations into categorical soil map creation with limited survey data. A case 
study using synthetic data demonstrated its feasibility. The objective is to suggest a cost-efficient method for 
updating categorical soil maps.  
 
Method 
 
A MCRF refers to a spatial Markov chain that moves or jumps in a space and decides its state at any 
uninformed location by interactions with its nearest neighbors in different directions through sequential 
Bayesian updating (Li, 2007; Li and Zhang, 2013). If we assume i1 to im are the states of the nearest 
neighbors in different directions around an uninformed location u0, the local conditional probability 
distribution of a MCRF Z(u) can be factorized as 
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where  is a normalizing constant, and u1 indicates the last stay location or the 
location that the spatial Markov chain goes through to current location u0 (Li, 2007). This full general 
solution is a multiple-point spatial statistical model, composed of two- to m+1-point statistics involving the 
uninformed location u0 and directional lag distances.  

)]([/)](),...,([ 1111 uuu ipiipA mm=

If the spatial Markov chain is stationary and its last stay location is far away from the current uninformed 
location, we may exclude the last stay location. Thus, the local conditional probability distribution can be 
factorized differently as 
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where  is a normalizing constant, and u1 is not the last stay location but just a nearest 
neighbor. Equation (2) is a special case of Equation (1).  
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Examining Equation (1) with the Bayesian inference principle, one can find that  
is the posterior,  is the prior, and the other part of the right-hand side excluding the constant is 
the likelihood part, composed of multiple terms. These likelihood terms update the prior recursively:   
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where Lk refers to the likelihood term for the kth nearest neighbor. When no nearest neighbor other than the 
last stay location is available, we get a posterior probability equal to the prior. But when there are other 
nearest neighbors, update begins on each datum in turn, and in each time of update the posterior of last 
update serves as the new prior. Therefore, the MCRF general full solution, that is, Equation (1), represents a 
simultaneous sequential Bayesian updating on different nearest data in a Markov-type neighborhood, which 
can be simply expressed as 

Equation (2) is similarly in accordance with the Bayesian inference principle, except that its prior 
becomes . It also can be similarly expressed like Equation (3) but with one more likelihood term 

. However, with Equation (1), Equation (2) is not much useful because one always can 
assume one of the nearest neighbors to be the last stay location of the spatial Markov chain.  
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Equation (1) is difficult to estimate from sample data due to the multiple-point statistics it involves. If we 
invoke the conditional independence assumption, a simplified general solution can be obtained as 
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where  represents a transiogram from class i0 at location u0 to class ig at location ug with the lag 

distance h0g; and i and f represent states in the state space S = (1, …, n). Because this simplified solution 
involves only two-point statistics, it is directly computable from sample data.  
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The contributions of auxiliary variables may be incorporated by different ways. Here we regard the 
auxiliary data as nearest neighbors of the uninformed location u0 in other variable spaces. For the co-located 
co-simulation case, the Co-MCRF model with one auxiliary variable can be written as  
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The four nearest neighbors in four cardinal directions may be regarded as conditionally independent 
given the state of the surrounded central location in a sparse data space (Li 2007). Therefore, it is proper for 
this model to consider only the nearest neighbors in four cardinal directions to approximately meet the 
conditional independence assumption and increase the computation efficiency. Nearest neighbors for sparse 
data may not be located exactly along cardinal directions. To cover the whole search area, quadrants is used 
to replace cardinal directions, and we can seek one nearest neighbor from each quadrant if available.  

The transiogram model estimation used linear interpolation. The cross-field transition probabilities were 
estimated by counting point-to-point frequencies of different class pairs from the sample data to the co-
located data of the legacy map. 

 
Data 

 
A piece of soil series map was used as the legacy 
map for case study. It has seven soil types (i.e., S1, 
S2, S3, S4, S5, S6 and S7). For method testing, we 
designed the following soil series changes: S5 is 
joined to S3; S1 is joined to S7; part of S6 became 
S7 at the bottom middle east; and part of S7 
became S6 at the top-right corner. As a result, we 
have five new soil series: SU2 (i.e., S2), SU3 (i.e., 
S3 + S5), SU4 (i.e., S4), SU6 (i.e., S6 + part of S7), 
and SU7 (i.e., S7 + S1 + part of S6). The resulting 
new soil series map was used as the reference map. 
Because we assumed only a few of small areas were 

subject to soil type changes, our limited field survey was also confined to these small areas. Thus, the survey 
data are insufficient and also biased for estimating the parameters (e.g., transiogram models) used in the co-
simulation. Our suggestion is to use pseudo sample data, that is, sample data directly extracted from unchanged 

Fig. 1. The legacy soil map and the reference soil map 

 2



 3

anged and unchanged areas.  
areas in the legacy soil map. Therefore, we sampled a sparse data set of 646 points from the reference soil map, 
which cover both the ch

 
Results 
 
The optimal prediction map of the soil series and the corresponding maximum probability map were 
estimated from simulated realizations, conditioned on both sample data and the legacy soil map. Comparing 
them with the legacy soil map and the reference map shows that the unchanged S2 and S4 were exactly 
reproduced (as SU2 and SU4, respectively), and that the S3, which was merged with S5 without other 
changes, was also exactly reproduced as SU3, in the optimal prediction map. However, S6 and S7, which 
changed into each other in some areas, were only approximately captured (as SU6 and SU7, respectively) 
with apparent uncertainty. The uncertainty mainly occurred at boundary zones between these two soil series. 
Those areas of these two soil series that are located far away from each other were also well reproduced. 
Although soil type changes were confirmed by sample data 
only in two small areas (i.e., the top-left corner and the 
bottom middle east) for S6 and S7, such changes caused the 
uncertainty of these two soil types in other areas in the 
updated map. The changed areas of S6 and S7 were well 
captured in the optimal prediction map. The merging of S1 
into S7 only increased the total area of SU7 and did not 
affect its uncertainty. Simulated realization maps and 
occurrence probability maps of single soil series further 
verify above judgments.  
 
Conclusions 
 
Co-MCSS demonstrated following merits: (1) if a soil type 
has no changes confirmed in an update survey or if it is 
decided to be reclassified into another type that is deemed 
to have no change, it will be simply reproduced; (2) if a soil 
type has changes confirmed in some areas, it will be 
simulated with uncertainty. In general, Co-MCSS may 
provide a practical method for revising categorical soil 
maps.  

Fig. 2. Simulated results: (a) optimal prediction 
map, (b) maximum probability map, (c) and (d) 
two realization maps 
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