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Ground observation can obtain high accuracy data at observation points, but 
observations at fixed positions are confined within some limited dispersal points and 
not able to directly calculate relative parameters at regional scale. Satellite remote 
sensing can frequently supply surface information of geographical processes and 
ecological processes, but remote sensing description is not able to directly obtain 
process parameters. Remote-sensing data can generate information about earth surface 
that is impossible from ground-based studies. However, maps derived from satellites 
observations are patchy and can not be used reliably as an independent source of 
information for earth surface monitoring because of the well know limitations of 
satellite retrievals, such as missing data for cloud-covered pixels (Emili et al. 2011). 
The most effective use of remote-sensing data is through its fusion with appropriate 
field investigation. 

In terms of fundamental theorem of surfaces, a surface is uniquely defined by the 
first fundamental coefficients, about the details of the surface observed when we stay 
on the surface, and the second fundamental coefficients, the change of the surface 
observed from outside the surface. A high accuracy and speed method for surface 
modeling (HASM) has been developed initiatively to find solutions for error problem 
and slow-speed problem of earth surface modeling since 1986 (Yue 2011). HASM 
takes global approximate information (e.g. remote sensing images or simulation results) 
as its driving field and local accurate information (e.g. ground observation data or 



sampling data) as its optimum control constraints. Its output satisfies the iteration 
stopping criterion which is determined by application requirement for accuracy. 

Earth’s surface obeys the conditions of uniqueness, continuity, smoothness, and 
finiteness because the Earth’s surface height, as a vertical coordinate, is restricted in 
space by the value of gravity and cannot be infinitely large or infinitely small. 
Attributes of the earth surface could be specially considered during the process of 
surface modeling include lines of relief discontinuity, steep and overhanging scarps, 
acute peaks, niches, caves, karst pits and sinkholes, as well as other elements violating 
the condition of smoothness. It is proven that the equation of Earth’s surface can be 

formulated as (Kerimov 2009), ( )yxfz ,=  where z  is an attribute value of the 

earth’s surface at location ( ),x y . 

For a surface ( )yxfz ,= , if it has continuous partial derivatives of first order, the 

first fundamental coefficients, E , F  and G , can be formulated as 
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If ( )yxfz ,=  has continuous partial derivatives of second order, the second 

fundamental coefficients, L , M  and N , can be formulated as,  
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The second fundamental coefficients reflect the local warping of the surface, 
namely its deviation from tangent plane at the point under consideration (Liseikin, 
2004). 

If the refined symmetric stencil is employed, HASM can be reformulated as 



ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ െ݂݅ ൅2,݆

ሺ݊൅1ሻ൅16݂݅ ൅1,݆
ሺ݊൅1ሻെ30݂݅ ,݆

ሺ݊൅1ሻ൅16݂݅ െ1,݆
ሺ݊൅1ሻെ݂݅ െ2,݆

ሺ݊൅1ሻ

12݄2

ൌ ሺ111߁ ሻ݅,݆
ሺ݊ሻ ݂݅ ൅1,݆

ሺ݊ሻ െ݂݅ െ1,݆
ሺ݊ ሻ

2݄
൅ ሺ112߁ ሻ݅,݆

ሺ݊ሻ ݂݅ ,݆൅1
ሺ݊ሻ െ݂݅ ,݆െ1

ሺ݊ ሻ

2݄
൅

݆݅ܮ
ሺ݊ ሻ

ට݅ܧ,݆
ሺ݊ ሻ൅݅ܩ,݆

ሺ݊ሻെ1

െ݂݅ ,݆൅2
ሺ݊൅1ሻ൅16݂݅ ,݆൅1

ሺ݊൅1ሻെ30݂݅ ,݆
ሺ݊൅1ሻ൅16݂݅ ,݆െ1

ሺ݊൅1ሻെ݂݅ ,݆െ2
ሺ݊൅1ሻ

12݄2

ൌ ሺ221߁ ሻ݅,݆
ሺ݊ሻ ݂݅ ൅1,݆

ሺ݊ሻ െ݂݅ െ1,݆
ሺ݊ ሻ

2݄
൅ ሺ222߁ ሻ݅,݆

ሺ݊ሻ ݂݅ ,݆൅1
ሺ݊ ሻ െ݂݅ ,݆െ1

ሺ݊ ሻ

2݄
൅ ݆݅ܰ

ሺ݊ ሻ

ට݅ܧ,݆
ሺ݊ ሻ൅݅ܩ,݆

ሺ݊ሻെ1

݂݅ ൅1,݆൅1
ሺ݊൅1ሻ െ݂݅ ൅1,݆

ሺ݊൅1ሻെ݂݅ ,݆൅1
ሺ݊൅1ሻ൅2݂݅ ,݆

ሺ݊൅1ሻ൅݂݅ െ1,݆
ሺ݊൅1ሻെ݂݅ ,݆െ1

ሺ݊൅1ሻ൅ ݂݅ െ1,݆െ1
ሺ݊൅1ሻ

2݄2

ൌ ሺ121߁ ሻ݅,݆
ሺ݊ሻ ݂݅ ൅1,݆

ሺ݊ሻ െ݂݅ െ1,݆
ሺ݊ ሻ

2݄
൅ ሺ122߁ ሻ݅,݆

ሺ݊ሻ ݂݅ ,݆൅1
ሺ݊ሻ െ݂݅ ,݆െ1

ሺ݊ ሻ

2݄
൅

݆݅ܯ
ሺ݊ ሻ

ට݅ܧ,݆
ሺ݊ ሻ൅݅ܩ,݆

ሺ݊ሻെ1

                       (3)

 where  

݆,݅ܮ
ሺ݊ሻ ൌ

െ݂݅൅2,݆
ሺ݊ሻ ൅ 16݂݅൅1,݆

ሺ݊ሻ െ 30݂݅,݆
ሺ݊ሻ ൅ 16݂݅െ1,݆

ሺ݊ሻ െ ݂݅െ2,݆
ሺ݊ሻ

12݄2

ඨ1 ൅ ሺ
݂݅൅1,݆
ሺ݊ሻ െ ݂݅െ1,݆

ሺ݊ሻ

2݄ ሻ2 ൅ ሺ
݂݅,݆൅1
ሺ݊ሻ െ ݂݅,݆െ1

ሺ݊ሻ

2݄ ሻ2

 

݅ܰ ,݆
ሺ݊ሻ ൌ

െ݂݅,݆൅2
ሺ݊ሻ ൅ 16݂݅,݆൅1

ሺ݊ሻ െ 30݂݅,݆
ሺ݊ሻ ൅ 16݂݅,݆െ1

ሺ݊ሻ െ ݂݅,݆െ2
ሺ݊ሻ

12h2

ඨ1 ൅ ሺ
݂݅൅1,݆
ሺ݊ሻ െ ݂݅െ1,݆

ሺ݊ሻ

2݄ ሻ2 ൅ ሺ
݂݅,݆൅1
ሺ݊ሻ െ ݂݅,݆െ1

ሺ݊ሻ

2݄ ሻ2

 

݆,݅ܯ
ሺ݊ሻ ൌ

݂݅൅1,݆൅1
ሺ݊ሻ െ ݂݅൅1,݆

ሺ݊ሻ െ ݂݅,݆൅1
ሺ݊ሻ ൅ 2݂݅,݆

ሺ݊ሻ ൅ ݂݅െ1,݆
ሺ݊ሻ െ ݂݅ ,݆െ1

ሺ݊ሻ ൅ ݂݅െ1,݆െ1
ሺ݊ሻ

2h2

ඨ1 ൅ ሺ
݂݅൅1,݆
ሺ݊ሻ െ ݂݅െ1,݆

ሺ݊ሻ

2݄ ሻ2 ൅ ሺ
݂݅,݆൅1
ሺ݊ሻ െ ݂݅,݆െ1

ሺ݊ሻ

2݄ ሻ2

 

݆,݅ܧ
ሺ݊ሻ ൌ 1 ൅ ൭

݂݅൅1,݆  
ሺ݊ሻ െ ݂݅െ1,݆  

ሺ݊ሻ

2݄ ൱

2

 

݆,݅ܩ
ሺ݊ሻ ൌ 1 ൅ ൭

݂݅ ,݆൅1
ሺ݊ሻ െ ݂݅,݆൅1

ሺ݊ሻ

2݄ ൱

2

 



ሺ111߁ ሻ݅,݆
ሺ݊ሻ ൌ

 ݆,൅1݅ܧ
ሺ݊ሻ െ  ݆,െ1݅ܧ

ሺ݊ሻ

݆,݅ܧ4݄
ሺ݊ሻ  

ሺ112߁ ሻ݅,݆
ሺ݊ሻ ൌ

 ൅1݆,݅ܧ
ሺ݊ሻ െ െ1݆,݅ܧ

ሺ݊ሻ

݆,݅ܩ4݄
ሺ݊ሻ  

 ሺ221߁ ሻ݅,݆
ሺ݊ሻ ൌ െ

 ݆,൅1݅ܩ
ሺ݊ሻ െ  ݆,െ1݅ܩ

ሺ݊ሻ

 ݆,݅ܩ4݄
ሺ݊ሻ  

ሺ222߁ ሻ݅,݆
ሺ݊ሻ ൌ

 ൅1݆,݅ܩ
ሺ݊ሻ െ  െ1݆,݅ܩ

ሺ݊ሻ

݆, ݅ܩ4݄
ሺ݊ሻ  

ሺ121߁ ሻ݅,݆
ሺ݊ሻ ൌ

 ൅1݆,݅ܧ
ሺ݊ሻ െ  െ1݆,݅ܧ

ሺ݊ሻ

݆,݅ܧ4݄
ሺ݊ሻ  

 

Let jiji ff ,,
~

=  at the sampled point ( )ji yx ,  in the computational domain, 

( ) Φ∈ji yx , ,  and 1}+J1,0+I0|)~{(=Φ ≤≤≤≤ jif,,yx i,jji  be the set of sampling 

points, then the matrix formulation of HASM can be expressed as, 
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(4)  is transformed as, 
( ) ( )nn vzW =+1                                                         (5) 

The coefficient matrix of HASM, W , is  a symmetric positive-definite and large 

sparse linear matrix.  
In terms of fundamental existing theorem for surfaces, if the first and second 

coefficients satisfy Gauss-Codazii equations, there exists a surface uniquely determined 



within a Euclidean displacement (Somasundaram 2005). The Gauss-Codazii equations 
can be transformed into,  
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where 
E
L

=1ϕ ; 
G

N
=2ϕ ; 

G

E
P y= ; 

E

G
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G
M

=1φ ; and 
E

M
=2φ .  

Thus, we can design an iteration stopping criterion of the improved HASM as, 

( ) ( ) ( ) EIPQPQQP yxyxxy <−+++−−−+−−− 2
2121

2
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1221 φφϕϕφϕφϕφϕφϕ      (7) 

where EI is determined by the requirement of an application for simulation accuracy.  
In this paper, principles and characteristics of HASM are described in details. We 

review robustness of HASM in its applications to constructing digital elevation model 
(Yue et al. 2007, Yue and Wang 2010, Yue et al. 2010a, b), filling voids of Data set of 
the Shuttle Radar Topography Mission (SRTM) (Yue et al. 2012), simulating climate 
change (Yue et al. 2011), and modeling surfaces of soil properties (Shi et al. 2009, 
2011). In all these applications, HASM produced the highest accurate results comparing 
with the classical methods.   
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