
Parallel Geospatial Raster Processing by Geospatial
Data Abstraction Library (GDAL) — Applicability and

Defects

Li-Jun ZHAN1,2, Cheng-Zhi QIN1,*

1,*State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, 11A Datun Road, Anwai, Beijing 100101, China

Telephone: (86-10-64889777)
Fax: (86-10-64889630)

Email: qincz@lreis.ac.cn

2Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Telephone: (86-10-64889461)

Fax: (86-10-64889630)
Email: zhanlj@lreis.ac.cn

1. Introduction
In order to deal with increasingly massive geospatial raster dataset, many researches on
parallel geospatial raster processing have been conducted (e.g., Guan and Clarke 2010;
Qin and Zhan 2012; Maulik and Sarkar 2012). However, two challenges broadly exist in
the input/output (I/O) part of parallel geospatial raster processing, which restrict its
application. The first is massive raster data whose movement between fast main memory
and slow disk, rather than the computation or communication, often becomes the
performance bottleneck of parallel geospatial raster processing. The second challenge is
diversity of geospatial raster data formats. Presently there are dozens of often-used file
formats for storing raster data. However, existing parallel geospatial raster processing
programs often support only very few file formats, which limit the practical applicability.

Some researches have been proposed to address the challenge of massive raster data
by providing parallel API to access single file storing massive raster data in specific
format, e.g. hierarchical data format v5 (HDF5) and parallel network common data
format (PnetCDF), and I/O libraries such as parallel input-output system (PIOS) (Shook
and Wang 2011). These researches mainly focus on the I/O performance but pay little
attention to the challenge of diversity of geospatial raster data formats.

A widely-used approach to addressing the diversity of geospatial raster data formats in
serial raster processing application is to use open-source geospatial data abstraction
library (GDAL, http://www.gdal.org/) (Warmerdam 2008). GDAL (with current version
of 1.9.2) presents a single abstract data model to read and write a variety of spatial raster
data formats. However, there is few literature presenting detailed analysis on the
applicability of GDAL for parallel raster processing. In this abstract, two possible I/O
modes (serial and parallel) of using GDAL for parallel geospatial raster processing are
explored and compared from aspects of efficiency and flexibility.

2. Two I/O modes of using GDAL for parallel geospatial raster
processing
Currently most algorithms of parallel geospatial raster processing are based on domain
decomposition strategy which the domain processed will be decomposed into subdomains.
Thus I/O step in parallel raster processing is to load data of subdomain(s) stored in
external memory into internal memory for each process, and later to write the
computational result data of the subdomain(s) from internal memory to external memory
for each process. There are two possible I/O modes of using GDAL to implement the I/O
step of parallel geospatial raster processing.

2.1 Serial I/O mode
Serial I/O mode of using GDAL to assess raster data for parallel geospatial raster
processing is illustrated in Figure 1. By this mode all data will be loaded from external
memory just through a master process. Other work processes will access the data by
communicating with master process. This mode might confront single bottleneck when
the raster file is so large that the memory capacity of single compute node will be
exceeded.

Figure 1. Serial I/O mode of using GDAL for parallel geospatial raster processing

2.2 Parallel I/O mode
Different with the serial I/O mode, parallel I/O mode of using GDAL permits each
process to directly read and write data of subdomain(s) stored in external memory (Figure
2). With the parallel I/O mode, the master process uses GDAL to extract the metadata
(e.g. spatial extent, projection) from a raster file and correspondingly create an empty
output file. Then according to a specific domain decomposition strategy the master
process sends the spatial extent information of each subdomain to the corresponding
work process. Based on the subdomain information received, each process uses GDAL to
read the data of the subdomain. After computing, each process uses GDAL to open the
shared output raster file and to write the result data in it. Thus not only the single

bottleneck problem but also the overheads of data distribution between the master process
and work processes in serial I/O mode can be avoided.

Input
raster file

GDAL

value …

1. read
metadata

GDAL GDAL GDAL
P0

P1 … Pn
3. send

subdomain
infomation

4. receive data

meta

5. read
data 6. write

data

output
raster file value …meta

2. create
file

master
process

worker
process

Figure 2. Parallel I/O mode of using GDAL for parallel geospatial raster processing

3. Implementation
Based on message-passing-interface (MPI) programming model, we implemented both
serial and parallel I/O modes of using GDAL (called GDAL_SIO and GDAL_PIO,
respectively). Each mode was implemented as that GDAL should support three
straightforward domain decomposition strategies which are often used, i.e. row-wise,
column-wise, and block-wise (Figure 3).

 a) b) c)
Figure 3. Domain decomposition strategies: a) row-wise; b) column-wise; c) block-wise.

4. Experimental design
The experiments were designed to evaluate the efficiency and flexibility of GDAL_SIO
and GDAL_PIO. Here the efficiency means how quick a mode tested can read and write
data in a raster file with specific format. Therefore runtimes of GDAL_SIO and
GDAL_PIO were measured under the same conditions by using the row-wise
decomposition strategy for a raster dataset saved as “gtiff” file format. Here the runtime
of GDAL_SIO includes not only the time for reading and writing data between internal
memory and external memory, but also the time for transferring data between the master
process and the work processes. The test data is a raster with a dimension of
24496×17100 cells. Both GDAL_SIO and GDAL_PIO were tested on two hardware
environments:

(1) a symmetric multiprocessing (SMP) with two Intel(R) Quad Core E5645 Xeon(R)
CPUs (twelve processors) and 32 GB RAM;

(2) a cluster composed of five nodes (one I/O node, four compute nodes). Each node
consists of two Intel(R) Quad Core E5645 Xeon(R) CPUs (twelve processors)
with 32 GB RAM. Compute nodes share the disk of I/O node through network file
system (NFS).

To evaluate the flexibility of each mode, i.e. if the mode works well under different

domain decomposition strategies for different raster file formats, GDAL_SIO and
GDAL_PIO using three decomposition strategies (i.e. row-wise, column-wise, and block-
wise) for two raster file formats (i.e. “gtiff” and “img”) were tested.

5. Experimental results

5.1 Efficiency
The experimental results show that on both SMP and cluster the runtimes from
GDAL_SIO are much longer than those from GDAL_PIO (Figure 4).

a) b)

Figure 4. Runtimes from two I/O modes with row-wise decomposition strategy under
different numbers of processes (test data is in “gtiff” format): a) a 12-processor SMP, b) a

60-processor cluster.

5.2 Flexibility
The experimental results show that GDAL_PIO lacks flexibility, comparing with
GDAL_SIO. For test data with “gtiff” format, GDAL_PIO with column-wise and block-
wise decomposition strategies performed highly inefficient, which the runtimes are
almost 13~15 times of that from GDAL_PIO with row-wise decomposition strategy
(Figure 5a). Worse still, GDAL_PIO with column-wise and block-wise decomposition
strategies got incorrect results which unreasonably contain zones without value (Figure
5b). For the test raster data stored as “img” format, GDAL_PIO similarly got incorrect
results, no matter which domain decomposition strategy was used. On the contrary,
GDAL_SIO can work correctly and is adaptable to all three decomposition strategies
(Figure 5a).

 a) b)

Figure 5. Performance of GDAL_PIO executed on cluster with a test raster file in “gtiff”
format: a) comparison between two I/O modes of using GDAL with three decomposition

strategies; b) example of the incorrect results from GDAL_PIO with column-wise and
block-wise decomposition strategies (black rectangles in figure are zones without result).

6. Summary
This abstract presents two possible I/O modes (serial and parallel) of applying GDAL to
parallel geospatial raster processing. The experimental results show that parallel I/O
mode is more efficient than serial I/O mode of using GDAL. However, parallel I/O mode
with current version of GDAL is lack of flexibility because it cannot work properly under
different domain decomposition strategies for different raster file formats. Now we are
fixing this problem in GDAL based on the analysis of the reason for this situation.

7. Acknowledgements
This study was funded by the National High-Tech Research and Development Program
of China (2011AA120302) and the Institute of Geographical Sciences and Natural
Resources Research, Chinese Academy of Sciences (2011RC203).

8. References
Guan Q and Clarke KC, 2010, A general-purpose parallel raster processing programming library test

application using a geographic cellular automata model. International Journal of Geographical
Information Science, 24 (5): 695-722.

Maulik U and Sarkar A, 2012, Efficient parallel algorithm for pixel classification in remote sensing
imagery. Geoinformatica, 16(2): 391-407.

Qin C-Z and Zhan L-J, 2012, Parallelizing flow-accumulation calculations on graphics processing units—
from iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm.
Computers & Geosciences, 43:1-50.

Shook E and Wang S-W, 2011, A parallel input-output system for resolving spatial data challenges: an
agent-based model case study. In: Proceedings of the ACM SIGSPATIAL Second International
Workshop on High Performance and Distributed Geographic Information Systems, New York, USA,
18-15.

Warmerdam F, 2008, The geospatial data abstraction library. In: Brent H and Michael LG (eds.), Open
Source Approaches in Spatial Data Handling. Springer, Berlin, pp. 87-104.

