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1.	Introduction	
In the very early developments of quantitative geography, statistical techniques were 
invariably applied at a ‘global’ level, where moments or relationships were assumed constant 
across the study region (Fotheringham and Brunsdon, 1999). However, the world is not an 
“average” space but full of variations and as such, statistical techniques need to account for 
different forms of spatial heterogeneity or non-stationarity (Goodchild, 2004). Consequently, 
a number of local methods were developed, many of which model non- stationarity 
relationships via some regression adaptation.  Examples include: the expansion method 
(Casetti, 1972), random coefficient modelling (Swamy et al., 1988), multilevel modelling 
(Duncan and Jones, 2000) and space varying parameter models (Assunção, 2003). 

One such localised regression, geographically weighted regression (GWR) (Brunsdon et 
al., 1996) has become increasingly popular and has been broadly applied in many disciplines 
outside of its quantitative geography roots. This includes: regional economics, urban and 
regional analysis, sociology and ecology. There are several toolkits available for applying 
GWR, such as GWR3.x (Charlton et al., 2007); GWR 4.0 (Nakaya et al., 2009); the GWR 
toolkit in ArcGIS (ESRI, 2009); the R packages spgwr (Bivand and Yu, 2006) and gwrr 
(Wheeler, 2011); and STIS (Arbor, 2010). Most focus on the fundamental functions of GWR 
or some specific issue - for example, gwrr provides tools to diagnose collinearity. 

As a major extension, we report in this paper the development an integrated framework for 
handling spatially varying structures, via a wide range of geographically weighted (GW) 
models, not just GWR. All functions are included in an R package named GWmodel, which 
is also mirrored with a set of GW modelling tools for ESRI’s ArcGIS written in Python. 

 

2.	The	GWmodel	package	
The GWmodel package is developed under the open source R software coding environment 
(R Development Core Team, 2011). The package includes all common GW models as well as 
some newly developed ones. Currently, the package consists of the following four core 
components: 
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accordingly. 

3.	Concluding	remarks	
This paper will introduce and demonstrate two forms of the GWmodel package, one 
developed in R, the other mirrored in python. Each package provides a suite of GW 
techniques that are currently not available within one single, GW software product. 
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