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1. Introduction  

In spatial statistics, geostatistics is quite strong for modeling spatial or spatiotemporal 

processes. Apart from regionalized variable theories, a critical part is how to design a 

valid variogram for modeling spatiotemporal autocorrelation or variability. To this end, a 

product-sum model of combining spatial and temporal variograms into a spatiotemporal 

variogram has been proposed early (De Cesare et al., 2001).  

The spatiotemporal kriging interpolation based on the product-sum model is useful for 

statistical predictions. However, the procedure of spatiotemporal kriging is computation-

intensive due to heavy load of calculating spatiotemporal distances and variograms. From 

the previous work by Kerry and Hawick (1998), it is known that computing parallelism is 

feasibly applied to kriging. Recently, the parallel computing approach to fast 

geostatistical areal interpolation has also been proposed by Guan et al. (2011). In this 

paper we innovatively present a parallel spatiotemporal kriging algorithm implemented 

with R snowfall package, and demonstrate its application to spatiotemporal interpolation 

of air temperature in East China. 

2. Spatiotemporal Kriging 

2.1 Product-sum Variogram Model 

The spatiotemporal random field Z(S,T) is assumed to be intrinsic stationary, if the 

variance of increments between two spatiotemporal random variables Var(Z(s+hs,t+ht)-

Z(s,t)) is a function of spatial distance hs and temporal distance ht. Then the function 

γst(hs，ht) called spatiotemporal variogram is shown as equation 1. 

        
(1) 

The product-sum of purely spatial variogram and purely temporal variogram, 

reflecting the mixed effects of purely spatial variability and purely temporal variability, 

can generate a valid spatiotemporal variogram. The product-sum spatiotemporal 

variogram function γst(hs，ht) is defined as equation 2. 

        (2) 

where γs is the spatial variogram, γt is the temporal variogram, Cs(0) is the spatial sill, 

Ct(0) is the temporal sill, and k1,k2,k3 can be calculated by equation 3. 

                                                             (3) 



where Cst(0) is the spatiotemporal sill, and it can be practically choosen from the larger 

one in Cs(0) and Ct(0). 

2.2 Parallel Spatiotemporal Kriging Algorithm 

In algorithm, the steps of spatiotemporal kriging are similar to the ordinary spatial kriging, 

that is, 

(1)  calculating the empirical spatial and temporal variograms at different lags to fit the 

theoretical variogram models( eg., the spherical model); 

(2)  applying the fitted spatial and temporal variogram functions to build product-sum 

spatiotemporal variogram model; 

(3)  choosing the samples within the spatiotemporal range at each unobserved location ; 

(4)  computing the variogram coefficient matrix of these samples and the variogram 

vector between each unobserved location and its sample sites; 

(5)  computing  the weight vector and the estimation at each unobserved location. 

Through analysis of computational complexity of each step, it is found that the last 

three steps have consumed the largest portion of computing time. To deal with this 

situation, our study is intended to explore parallel computation techniques applied in 

these time-consuming steps. Obviously, the data interpolation of each unobserved 

location is an independent task which can be regarded as a parallel unit. The essential part 

of this algorithm is data parallelism. By data parallelism, it means that coordinates of 

each unobserved location, coordinates of its nearby sample sites and the sample attribute 

values are assigned to a free node. Then sample spatial distances and temporal distances 

are calculated in each node, and the results are used to calculate the sample 

spatiotemporal variograms. But we realize that two adjacent points have so many 

identical nearby samples within the spatiotemporal range, especially when unobserved 

locations are dense. So the identical sample distances and variograms are calculated twice 

redundantly. Although this kind of computation can be parallelized, it wastes 

computational resource and pose a significant increase of computing time.  

To solve this problem, spatiotemporal variograms between all the sample pairs in the 

interpolation region should be calculated and saved in the host node. The host node 

broadcasts all the sample spatiotemporal variograms to each node so that variograms 

between any sample pairs can be queried. However, this method not only reduces 

redundant computation, but also brings unnecessary computation. That is because 

variograms between some sample pairs faraway from each other may not be used for the 

data interpolation of any unobserved locations. Nevertheless, this unnecessary 

computation can be ignored as compared to the redundant computation in most cases. 

We employ the dynamic load-balancing techniques to make full use of computing 

power and reduce computing time. Initially, it is not determined that which tasks of 

unobserved locations a specific node will perform. But each node will be assigned one 

task. Then the remaining tasks will be successively assigned to the free nodes which have 

finished their own tasks. 

3. Experimental Analysis  

This parallel algorithm implemented on the basis of R snowfall package is used for 

spatiotemporal interpolation of air temperature in July 2007 in East China with 

corresponding monthly air temperature data from January 2007 to December 2008. R 



itself does not allow programs to be executed in parallel. But there exist technical 

solutions, e.g., snowfall for R, to deploy computational tasks over a single multicore 

machine and even a cluster. Snowfall supports several networking types such as socket, 

MPI and PVM (Knaus et al. 2009). For convenience, the socket type is used in our 

experiments. For experimental test, the clusters with two computers of two four-cores 

CPUs are configured. 

The speedup results for different problem sizes are shown in fig. 1. The problem size 

stands for the number of unobserved locations in East China. In our case, obviously 

problem size 7886 provides the best speedup results, while problem size 80 does the 

worst. The results have explained that the parallel efficiency increases as the problem size 

increases. The main reason is that the major part of serial time spent on the computation 

of all the sample spatiotemporal variograms is almost fixed. The serial part is 

independent of the problem size, while the parallel time is directly proportional to the 

problem size. 

  

 
Figure 1. The speedup results for different problem sizes 

4. Conclusions 

The product-sum spatiotemporal variogram models space-time autocorrelaiton well, but 

brings intensive computation. To overcome this issue, a parallel spatiotemporal kriging 

algorithm is proposed in our study. The relationship between parallel efficiency and 

problem size is analyzed. The speedup results for different problem sizes show us that the 

parallel efficiency increases as the problem size increases. Thus, this parallel algorithm is 

appropriate for the data interpolation with dense unobserved locations. 

We realize that the main problem of low parallel efficiency is that the sample 

spatiotemporal variograms are calculated serially in the host node and are broadcast to 

each node. Our ongoing work is how to parallelize this part of work in criterion of load 

balance. Perhaps we can divide these sample pairs into several parts and distribute these 

parts to each node evenly. The sample distances and variograms are calculated in each 



node. Then the host node gathers these results and broadcasts all the sample variograms. 

Although this method increases the communication overhead, the parallel efficiency 

could be improved a lot. Currently we apply the network socket to implement the parallel 

algorithm, and the algorithm based on MPI can be further developed. 
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