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1.	  Introduction	  	  
Social systems are incredibly complex due to the large number of interacting elements and 
many underlying processes that are simply not understood. Moreover, these processes are 
generally non-linear such that small changes in system parameters can have large effects on 
the outcomes of the system as a whole. Agent-based models (ABMs) have been developed as 
one technique for modelling complex systems where the individuals or ‘agents’ of the system 
are explicitly represented. Agents are independent entities that are capable of interacting with 
each other and with their environment. The agents make assessments of their situation over 
time (or during each iteration of the model) and then make decisions in response to these 
assessments (Bonabeau, 2002). By providing realistic environments and rules that are based 
on observed and expected patterns of human behaviour, it is possible to create models that 
can simulate real world systems (Moss and Edmonds, 2005).  
Although ABMs represent a way to capture complexity in social systems, they have issues 
related to parsimony, i.e. they contain a potentially large number of parameters. Some 
parameter values can be determined through expert knowledge or can be derived from field 
measurements or social surveys. However, many others are unknown and therefore require a 
method to determine their values. This need to calibrate a model is not limited to ABMs and 
many different methods of search and optimisation are available. However, classical search 
methods are not effective in finding large numbers of parameters so other methods such as 
genetic algorithms (GAs) are needed. 

GAs are intrinsically suited to optimisation when the fitness landscape is complex, changes 
over time or has many local optima. Through inherent parallelism, they are able to 
simultaneously explore numerous potential solutions (Holland, 1992; Mitchell, 1998; 
Goldberg, 1989).  GAs operate as follows: a population is first initialised and the objective 
functions are then set. The fitness of each individual is assessed and on the basis of this, the 
fittest in the population are selected for reproduction via crossover. This continues over many 
generations or iterations until predefined criteria are satisfied, e.g. a certain threshold value 
for the objective function has been reached. For a more detailed overviews of GAs, the 
reader is referred to Goldberg (1989), Davis (1991), Michalewicz (1992), Bäck and Schwefel 
(1993) and Eiben and Smith (2003).  



This paper briefly presents the optimisation of an ABM through the application of a GA for 
exploring the behaviour of simulated burglars. 

1. The	  Agent-Based	  Burglary	  Model	  
The model utilised here attempts to provide a detailed representation of burglary at the city 
scale that includes a) detailed offender drivers, decision making, and behaviour; b) realistic 
victim distributions and attributes, including daily variations in household occupancy; and c) 
a realistic environment including a full transport network and reasonable levels of 
guardianship. A detailed description of the model design and data preparation is given in 
Malleson (2010a, b).  The experiments presented here were run on the city of Leeds, UK. 
The motivation behind the model is to simulate the spatio-temporal locations of burglaries at 
the city scale and, ultimately, to provide a framework for modelling and testing our 
understanding of the criminal system. The model runs for a fixed length of simulated time -- 
sufficient to reach dynamic equilibrium -- so does not predict the actual number of crimes. 
Instead, we focus here on the values of the behavioural parameters that drive the behaviour of 
the agents to determine what these tell us about the behaviour of burglars in the real world.   
 

2. Optimising	  Parameters	  Using	  a	  GA	  
 

There are 7 different variables that determine where burglar agents will start searching for 
targets and which houses, in particular, they will actually victimise (see Table 1). Each 
variable has a weight associated with it, and it is these weights that will have their value 
optimised by the GA.  

This can help to determine which parameters have the most substantial influence on the 
model, and the values may eventually inform our understanding of the behaviour of burglars 
in the real world. For example, the majority of offenders in the area might be less concerned 
with the distance to travel (Distance), but much more concerned with the potential returns 
(Atrractiveness) – the GA will help to illuminate this. 

 

Table 1 The parameters that influence an agent’s burglary decision. 

Variable Description 

Decision where to start searching (the individual house to travel to) 

1. Distance The distance from the agent’s current location 

2. Attractiveness The affluence of the target area 

3. Social Difference The social similarity between the target and the agent’s home 

4. Previous Successes The number of previous successful burglaries 



Decision whether or not to burgle a house as the agent passes it 

5. Community Cohesion How cohesive the surrounding community appears. 

6. Accessibility How easy the house would be to enter. 

7. Visibility How visible the entrances are to neighbours / passers-by 

  

3. Results	  	  
 

A population of 20 model configurations were used and the GA was tracked over three 
iterations. Computational requirements limited both the size of the population and the 
number of iterations – these will be improved in the future. The fitness of each model 
configuration (or ‘chromosome’) is provided in Figure 1, which is plotted against the 
iteration number. The GA is able to identify which model configurations result in the lowest 
error and, hence, which should be used to generate the configurations in the next iteration. 
Accordingly the model error decreases with each subsequent iteration. Figure 1 also 
highlights some clustering of fitness values after the initial (random) population undergoes an 
evolution. This illustrates that the algorithm is fine-tuning the ABM in different parts of the 
parameter space that have the lowest error. 

Table 3 provides the values for each of the parameters for the models with the lowest error 
after each iteration. The GA appears to converge very quickly to an optimal configuration, 
which is found after the first iteration and does not change substantially over the next few 
iterations, although a marginally different configuration is found in iteration 3. This implies 
that the algorithm has found a global maximum, or alternatively, the model may need to run 
many more generations before a further improvement is found.  

 



  

Figure  1. Fitness of all the chromosomes by GA iteration 

Table 3. Values of the parameters after each iteration 

Iteration Fitness w1 w2 w3  w4 w5 w6 w7 

0 1.372 0.719 0.668 0.736 0.683 0.541 0.291 0.984 

1 1.362 0.719 0.668 0.736 0.683 0.541 0.291 0.984 

2 1.372 0.719 0.668 0.736 0.683 0.541 0.291 0.984 

3 1.365 0.689 0.717 0.781 0.727 0.510 0.241 1.000 

The weights: w1 = distance; w2 = attractiveness; w3 = SocialDifference; w4 = PreviousSuccess;  

w5 = CollectiveEfficacy; w6 = Accessibility; w7 = Visibility 

 
To review the results spatially, Figure 2 presents maps of the burglary counts generated by 

the three best model configurations after GA iterations one (‘Model 1), two (‘Model 2’) and 
three (‘Model 3’). The results are presented in two forms. The maps on the left hand side of 
Figure 2 present results that have been spatially aggregated to the geography of the 
communities and the maps on the right hand side present point density estimates produced 
using the Kernel Density Algorithm (KDE). The use of KDE arguably presents a more 
accurate picture of the underlying point patterns and is commonly used by police analysts 
(Chainey and Ratcliffe, 2005).  



 

 

Fig. 2. Results from the three best model iterations after 1, 2 and 3 iterations 

The model results show consistently high numbers of burglaries on the western side of the 
study area, which matches the general pattern exhibited by the observed data. Interestingly, 
these larger scale patterns are similar regardless of the differences in configuration, which 
suggests that small changes to any of the agents’ behavioural parameters have little effect on 
the model results. Some small differences can be seen in the centre of the study area where 
some small hotspots are picked up differentially between the three models. Any 
discrepancies are likely to be a result of the probabilistic nature of the model, although there 
would be scope to investigate what might be generating these differences. However, it is 
encouraging that small parameter changes have little effect on the model results because, 
were this not the case, it would be more difficult to be confident in the robustness of the 
results. This represents another considerable advantage of the application of an optimisation 
algorithm to this model. 

 



5.	  Discussion	  	  
This paper presented some very preliminary attempts at using a GA to estimate the 
parameters of an ABM of burglary. These initial findings indicated that the weight associated 
with the visibility parameter was consistently high. This means that with the models that 
closely matched the observed crime data, the agents were more likely to burgle houses that 
were well hidden from their neighbours and passersby.  

However, one major issue with the GA approach as utilised in this example was the large 
amount of computational time required to run the model, even with only three iterations per 
GA run. The ABM itself is extremely computationally expensive. Even after some 
simplifications from the original configuration (Malleson et al., 2010b), a single model run 
still required approximately 10 hours to complete on a normal desktop machine.   

The implications of using such an approach when scaling up an ABM to a much larger area, 
with larger numbers of individuals and with a much larger number of parameters is clearly 
evident from these preliminary experiments. Ambitious ABM projects such as modelling the 
entire economy of the United States (Farmer and Foley, 2009) will clearly face major 
computational challenges in the future. But without methods like GAs, the task of parameter 
estimation would render such modelling approaches infeasible. 
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