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1. Introduction 
Minimizing costs and maximizing coverage are common goals in many planning contexts. 
Examples include locating fire stations to guarantee immediate response to calls for service, 
placing emergency warning sirens to alert the public of impending danger, or siting cellular 
towers to allow widespread access of wireless broadband. To support these planning problems, 
spatial optimization problem are utilized. This necessitates an abstraction of both the planning 
problem as well as geographic space. Unfortunately, such abstraction results in unintended errors 
when traditional spatial optimization coverage models are applied. In order to reduce coverage 
errors caused by spatial abstraction, a number of geographic representation schemes have been 
proposed. One intriguing approach relies on vector GIS based overlay as a way to identify the 
finest level of geographic resolution needed for a demand region in order to eliminate 
representation errors. However, this involves many GIS/geometric operations, such as polygon 
overlay and partitioning that are well-known to be computationally intensive (De Berg et al. 
2008). Combined with issues of potential facility locations, it is possible that the resulting 
number demand units using overlay is excessive and beyond computational capabilities. This 
paper therefore investigates the operational and computational challenges of polygon overlay for 
representing continuous demand in coverage models, an issue that has yet to be explicitly 
studied. The analysis results provide insight regarding expected problem sizes and computation 
requirements if this is relied upon in coverage modeling. 

2. Coverage model 
An important spatial optimization problem is the location set covering problem (LSCP) (Murray 
and Wei 2013). The intent of the LSCP is to site the minimum number of facilities in order to 
ensure complete coverage of a demand region. It was first formulated by Toregas et al. (1971) to 
site emergency service facilities. Consider the following notation: 

i = index of demand units to be served (entire set I, |I| = M); 
j = index of potential facility locations (entire set J, |J| = N); 

aij = � 1,  if demand i can be suitably served by facility j;
0,                                                                      otherwise; 

Ωi = �j�aij = 1�; 

Xj = �1,  if a facility is sited at potential location j;
0,                                                           otherwise; 

The aij elements indicate an evaluated coverage standard, reflecting suitable serve response in 
distance or travel time. Taking fire services as an example, aij = 1 would reflect personnel at a 
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fire station at location j being able to reach demand at location i in 8 minutes or less. GIS is 
generally used to evaluate such service standards (Church and Murray 2009). Given this 
notation, the LSCP formulation follows: 
Location Set Covering Problem (LSCP) 

Minimize     Z = �Xj
j

                                                                                (1) 

Subject to   � Xj
j∈Ωi

≥ 1,∀i                                                                          (2) 

Xj = {0,1},∀j                                                                          (3) 
The objective of the LSCP, (1), is to minimize the number of facilities located. Constraints (2) 
ensure that each demand is covered by at least one sited facilities. Constraints (3) impose binary 
integer restrictions on decision variables. It should be noted that the potential facility locations, 
demand units and coverage sets need to be identified in advance to apply the LSCP. Doing so in 
a manner that is error free remains a challenge (Murray and Wei 2013).  

3. Spatial representation and coverage overlay 
When the purpose of planning is to provide complete service to a continuous region, there is 
generally a need to abstract the continuous region into discrete spatial objects, like points or 
polygons. However, the abstraction process is well known to create uncertainties or errors in 
coverage modeling. As an example, a point representation could result in an underestimate of 
actual required facilities, while an area representation may lead to an overestimate of needed 
facilities (Murray and Wei 2013). Recently, a vector based overlay approach was employed to 
partition the continuous demand region, where each resulting unit is a disjoint piece of coverage 
overlay (Cromley et al. 2012). Figure 1 shows how this approach works when the facility 
coverage is measured by Euclidean distance. Given that each demand unit is the smallest areal 
unit that a sited facility could possibly cover, there is no partial coverage of demand. That is, a 
demand unit is either completely covered or not covered at all. Such a property is extremely 
important, as this ensures that demand unit polygons are partitioned in a way that no error in 
coverage would result. Thus, the optimal solution for the corresponding LSCP instance will 
reflect the true minimum number of facilities required to cover the entire region. This is 
theoretically important. However, an issue is then whether the approach is computationally 
feasible in practice, as the complexity of geometric computations involved are not trivial nor 
would the resulting spatial optimization model necessarily be possible to solve. 

4. Evaluating coverage overlay  
There are two major computational concerns with overlay approach. The first is attributed to the 
a priori generation of demand units, involving considerable geometric operations and processing. 
The second is associated with solving the resulting LSCP. It is well recognized that the number 
of polygons arising from overlay is a good estimate for overlay processing time (Saalfeld 1989). 
The input for overly in this case involves the coverage region for each potential facility location, 
J, and the demand region. The size of LSCP model largely determines whether it can be solved 
using commercial software. The size of an LSCP is dictated by the number of generated demand 
units to be covered (derived in this case using overlay) as well as the number of potential facility 
locations. The number of generated demand units, therefore, is a proxy for assessing the 
computational performance of the coverage overlay approach.  
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In general, it is difficult to predict the number of polygons that result from an overlay operation 
(NCGIA 1997).  Actually, even establishing a valid bound is not easy (Saalfeld 1989). However, 
if the coverage standard is the distance r, and facility coverage is considered to be a circle with 
radius r, then an upper bound for the number of overlay polygons does exist. This assumption is 
not unrealistic because many types of facilities have circular service coverage, like emergency 
warning sirens and cellular towers. Equivalent to the plane division by circles problem in 
Yaglom and Yaglom (1987), the maximum number of demand units into which facility coverage 
can be divided is: 

M ≤ N2 − N + 2                                                                     (4) 
where M is the number of demands and N is the number of potential facility locations, consistent 
with previous terminology. While the above bound may be useful in assessing the number of 
demand units that would be generated, it could be a very loose bound in practice. As an example, 
291 facilities, shown in Figure 1b, could possibly generate 84,392 demand units theoretically. In 
practice, however, only 13,320 units are observed. The bound is 7 times larger than the actual 
number. As a result, there is a need to derive a more accurate estimate for the number of demand 
units. Given that more intersections of coverage circles will typically result in more generated 
demand units, it is reasonable to account for the potential intersections in evaluating generated 
demand units. To do so, the pairwise distances between potential locations must be computed in 
advance, which is computationally efficient as facility sites are represented as points. Let djj′  be 
the distance between facility locations j and j′, r the coverage radius, and Ψj the set of locations 
whose coverage intersects with the coverage of facility j, the average number of intersections per 
coverage (ANI), can be defined as follows: 

Ψj = �j′�djj′ ≤ 2r�                                                                    (5) 

ANI =
∑ |Ψj|j

N
                                                                            (6) 

The ANI value is an average, independent of the number of potential facility locations. If both 
variables are combined to estimate the number of demand units, a better prediction is expected.   

5. Preliminary results 
In order to evaluate the computational challenges posed by the overlay based approach, 54 
application instances are examined. The details of study design will be included in the full paper. 
A standard regression model is established including the two explanatory variables that are 
hypothesized to be related to number of demands generated (𝑀). Specifically, this involves the 
number of potential locations (𝑁) and the average number of intersections per coverage (𝐴𝑁𝐼) 
as follows: 

√𝑀 = β0 + β1 ∗ N + β2 ∗ ANI                                                (7) 
The regression results are presented in Table 1. Both of the explanatory variables are significant 
with p-value≈0.00 . The coefficients are positive, implying that larger number of potential 
locations and average intersections will result in more demand units. This conforms to the initial 
hypothesis. The R-square is close to 99%, which is encouraging as it suggests about 98.92% of 
the variability in predicting new observations can be explained using this model, along with the 
approximately 99.1% of the variability in the original data. The predictive capability of the 
model is satisfactory and it is reliable to use this model to predict the coverage overlay partition 
results. 
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Table 1: Regression results for number of demands using number of sites and ANI 
Variable Coefficient Std. of 

coefficient 
t-statistics p-value 

Constant 215.56 2.359 91.38 0.000 
Number of sites 60.624 3.132 19.36 0.000 
ANI 134.477 3.132 42.93 0.000 

F-statistics 2852.2 (p-value = 0.000) 
R-square 99.1% 

R-square (prediction) 98.92% 

6. Future work and conclusion 
The paper has established theoretical and practical bounds for the number of generated demand 
units that can be expected from polygon overlay. This is important in spatial optimization 
approaches that rely on overlay for pre-processing. The analysis demonstrates that it is possible 
to accurately predict the number of demand units that will be generated by coverage overlay 
using two easily accessible variables. However, this is only one part of the evaluation. More 
work remains for the processing and solution time to formalize the computational complexity 
involved in coverage overlay approach. The findings of this paper can be used to determine 
whether this approach is computationally feasible for a given practical application, contributing 
to addressing abstraction and representation issues in coverage modelling. 
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(c) 

Figure 1: Coverage overlay approach. (a) Served region; (b) Potential facility locations and their 

corresponding coverage; (c) Demand units created by coverage overlay. 
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