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1. Introduction  

Regionl soil organic carbon investigation is crucial for both soil carbon sequestration and 

soil nutrition assessment(Wang. et al. ，1995). Traditionally, this work can be done by 

designed field soil sampling and classification based estimation. This is time-consuming, 

labour-intensive and costly. How to effectively mapping soil organic carbon with least 

sample point to gain reasonable accuracy, is a challenge. Many researches have revealed 

that spatial distribution of soil organic carbon is related to the soil formation processes, 

depending on landscape position, climate, as well as the biological conditions and land 

use history. Recent explorations on digital soil mapping using geostatistics and 

geographic information system technology have showed that soil organic carbon content 

within certain range has strong autocorrelation and good semivariance structure. 

Meanwhile, numberous methods of soil variable interpolation from discrete soil sampling 

points to continuous spatial distributing maps have been developed(Yang. et al. ，2011; 

Yang. et al. ，2010; Zhao. et al. ，2012). Among those methods, combined geostatistical 

and GIS is the widely used one. It provides a promising way of rational sampling based 

on spatial analysis( Lu. et al. ，2011). 

Here we present primry results of sample size optimization for regional soil organic 

carbon mapping. In this study, datasets of black soils in North-east China from the second 

national soil survey is retrieved from the soil species of China, and geostatistics is 

combined with GIS to explore the relationship between the number of sampling points 

and mapping accuracy of soil organic carbon content(SOCC).  

 

2. Material and methods 

2.1 Research area and datasets 

In order to include all the areas with black soil, here we define the Northeast China as 

eastern Heilongjiang, Jilin, Liaoning and Chifeng City, Tongliao City, Xinganmeng and 

Hulun Buir City of Inner Mongolia, located at 115° 52’ to 135° 09'E, 38° 72' to 53° 

55’N(Fig 1). Total area is 1,242,600 km
2
.  

Totally, 417 soil profiles with detailed records, which includes geographic location, 

altitude, mean annual temperature, mean annual precipitation, soil depth, soil bulk 

density, soil organic matter content and land use are retrived from the second national 



soil survey database. After calculation of soil organic carbon from organic matter content 

with a factor of 0.58, ten subsets of data with sample size (as show in table 1) are 

extracted to analysis SOCC spatial variability and digital mapping accuracy.  

 

 
Figure 1. Location of the research area and the sample points distribution. 

 

2.3 Mappig methods and acuracy test 

Firstly, all the profile data are grouped according to soil species, horizon and land use 

type respectively to calculate a representative profile, and then the depth, SOCC and 

several other attributes  for each representative profile is estimated. Land use is grouped 

into three major types, including agriculture, grassland and forest. 

Then, statistical distribution of SOCC is detected for original datasets. Afterwards, data is 

logarithm transformed and sorted according to longitude and latitude to meet the need of 

spatial analysis.  

All the spatial analyses and graphing in this study are conducted by the GS
+
 and 

ARCGIS9.3 software, including optimised semivariogram model selection, kriging 

interpolations and digital mapping. After interpolation, SOCC are re-sampled from the 

digital maps with different sample points to test the mapping accuracy by comparing 

model interpolations with actual samples results. The errors and fitting effciency are 

indicated by Root Mean Square Error (RMSE), average standard error (ASE) and fitting 

coefficient (R
2
), respectively. 

Finally, SPSS 11.5 software is used to detect the relationship between SOCC and 

auxiliary variables, including geographical location, mean annual air temperature, land 

uses, to test the possibility of using the auxiliary information to improve the accuracy of 

SOCC prediction. For all analyzes, the high significance is defined at the 0.05 level (2-

tailed). 

 



3. Results and discussion 

Statistical exploration of whole dataset shows that SOCC follows the skewed distribution. 

All the 10 sub-datasets are logarithm transformed accordingly for semivariance fitting 

with GS
+
 software. The best fitting semivariance models and parameters for each subset 

are as show in table 1. Best fitting model for data with different sample size is different, 

indicating the self-correlations of sample point and thus the spatial variability of SOCC 

presented in each subset are different. In addition, the ratios of nugget to sill(C0/ Sill) are in 

the range of 18.32%~38.04%, with average value below 25%, suggesting that the 

autocorrelations of SOCC in the whole research area are significant. Fitting coefficients 

for different subsets are in the range of 0.308 to 0.775. It is greater than 0.705 when the 

sample size greater than 153 and change slowly from sample size of 153 to 417. This 

suggests that the model fitting reveals about 70% of the semivariant structure of SOCC in 

the research region when the sample size larger than 153.  

 

Table 1.Semivariance models and fitting parameters of SOCC under different sample size 
Data 

sets 

Numbers 

of sample 

Model Nugget 

(C0) 

Sill

（C1） 

[C0/ Sill] 

% 

Major 

range/m 

R
2
 RSS 

N 417 Gaussian 0.38 1.04 37 11837 0.775 5.270 

A 375 Exponential 0.28 1.02 28 26851 0.755 1.150 

A1 300 Gaussian 0.36 0.94 38 11837 0.736 2.380 

A2 240 Spherical 0.34 1.17 29 11837 0.771 3.320 

A3 192 Gaussian 0.33 1.22 27 11837 0.769 4.060 

A4 153 Spherical 0.28 1.09 25 16711 0.705 3.250 

A5 122 Spherical 0.20 1.10 18 17871 0.669 5.440 

A6 97 Spherical 0.21 0.59 36 7941 0.493 1.950 

A7 77 Spherical 0.21 0.79 27 12317 0.461 2.590 

A8 61 Exponential 0.20 0.62 32 13811 0.308 0.873 

A9 48 Spherical 0.19 0.53 37 9192 0.416 0.101 
Note: model denote the best fitting model used under different sample number. R

2
 and RSS refer to 

the fitting coefficient and residual SS, respectively. 

 

 

Spatial interpolations of SOCC by the simple kriging method based on different sample 

size are as show in Figure 2. We generate spatial distribution maps for all the 10 subsets. 

Here we only select four to illustrate the differences caused by sample size.  In order to 

interpret mapping results, the space distribution of SOCC on the maps have divided into 

high-value area (> 25g/kg), transition zone (11.87 ~ 25 g / kg), median (6.01 ~ 11.87 g / 

kg) and low-value area (<6.01 g / kg). It is clear that all the interpolation show the spatial 

trends of SOCC in the research area, with higher values at north-east part and low values 

at southwest part. However, the high-value area is not included in the map with a sample 

size of 48, indicating that too few sample points may not represent the full range of the 

SOCC in the region. When the sample size greater than 153 the value areas keep stable. 

Differences between interpolation results are in the size and shape of the areas. 

Differences between value areas for sample size of 192 and 417 are relatively small and 

mainly in the size and places for high and low value areas. When sample size greater 300, 

SOCC interpolation results nearly show the same pattern as sample size of 417. This 

http://dict-client.iciba.com/2012-12-07/index.php?c=client&word=%E8%A7%A3%E9%87%8A&dictlist=1,101,202,5,103,4,201,6,104,7,105,8,9,3,2,102,203,204,&zyid=0&nav_status=1&type=0&authkey=1fc896eaa46d6ef463c699fb95227d4f&uuid=74A7D432380348078E4A0390010432AC&v=2012.12.19.024&tip_show=2,1,3,4,5,6,&fontsize=0&channel=21.00###


suggests that the sample size of 192 to 300 may represent most of the spatial variability 

of SOCC in the region. 

 

 

 
Figure 2. Selected digital maps of soil organic carbon in North-east China based on 

different sample points. Among these, A9,A4,A3 and N, refer to the result for sample 

points of 48,153,192 and 417, respectively. 

 

The change of mapping accuracy with sample size is show in figure 3. Based on the 

standard of geostatistics, lower values of RMSE and ASE as well as closer of them 

indicate better prediction.  RMSE and ASE are closest at a sample size about 240. The 

fitting coefficients increase rapidly as sample size below 122 and change weakly when 



sample size greater than 153. In the meanwhile, fitting coefficient vary in the range of 

0.71 to 0.78 and RMSS is around 1 when sample size greater than 153. When we include 

both the mapping accuracy and sampling costs, a sample size of about 240 may be 

suggested for SOCC mapping in the research area. 

 
Figure 3. Change of interpolation parameters with sample size. RMSE, ASE, RMSS and 

R
2
 are the Root Mean Square Error, Average Standard Error, Root Mean Square 

Standardized and fitting coefficients for different models under different sample size, 

respectively. 

 

Stepwise regression show that SOCC is related to auxiliary variables, including the 

longitude, latitude, CEC, pH, mean annual temperature, soil bulk density and land use 

types of the sampling points (results not show). Among these variables, mean annual 

temperature, CEC and pH are not readily obtainable for sample points by field work, but 

others could be measured at the same field campaign. It provides the possibility of using 

this auxiliary information to improve the accuracy of SOCC prediction. 

 

 
Figure 4.  SOCC distribution based on the regression model prediction. 

  



 

After including the information of longitude, latitude, soil bulk density and land use types, 

a new spatial distribution pattern of SOCC is generated (Figure 4). Together with the 

interpolated digital maps of SOCC (Figure 2, A3 and N), it is clear that Liaoyang, Fuxin, 

Panjin, Jinzhou are located in the low value areas of SOCC from both interpolation and 

regression model predication results. These areas also have lower uncertainty during 

model fitting and mapping. Thus, the easily obtainable auxiliary factors can be employed 

to reduce the points of soil sampling while keep mapping accuracy. Eastern part of 

Sanjiang Plain, including Jiamusi, Qitaihe, Jixi, Hegang and ShuangYashan are in the 

area with abundant soil organic matter. This area is also in the high value area both from 

interpolation and regression model prediction. Because the Songnen Plain region is 

China's major grain producing area and SOCC is affected by human activities, for 

instance, land use change, and further study for reasonable sample size and frequent field 

survey is strongly needed to guarantee an updated SOCC mapping. Differences between 

results of interpolation and regression model predictions are relatively large for 

Northeastern part of Inner Mongolia and northwestern Heilongjiang province. Sample 

points during soil survey are relatively sparse in this area (Figure 1). Grassland and 

woodland are the main land use types in this area. SOCC might be influenced strongly by 

environmental factors, such as climate, vegetation and topography. So, study on rational 

sample size, use of auxiliary information and model prediction should be strengthed for 

further improvement of SOCC mapping accuracy effectively.  

4. Conclusion 
Regional soil organic carbon content mapping is a novel way for large scale estimation. 

However the accuracy of mapping strongly depends on sample size.  How to improve 

mapping accuracy is still a challenge. Combined geostatistical and GIS technique is a 

promising way of optimizing the sampling process. 

Our results from black soils in North-east China show that: 

1) A sample size of around 240 may give a relatively reasonable spatial estimation of 

soil organic carbon distribution for area of 1,242,600 km
2
 in this region. 

2) Use of readily obtainable auxiliary variables, including longitude, latitude, soil bulk 

density and land use types, may help to improve the sample size optimization. 

3) Using of the national soil survey datasets show that low soil carbon content areas 

locate in Liaoyang, Fuxin, Panjin, Jinzhou, where have relative high density 

sampling points and easily obtainable auxiliary factors can be employed to reduce 

the points of soil sampling while keep mapping accuracy. High value areas are in 

Eastern part of Sanjiang Plain accompanied by much frequent land use change. 

Further study for reasonable sample size and frequent field survey is strongly needed 

to guarantee an updated SOCC mapping. Sample points during soil survey are 

relatively sparse in Northeastern part of Inner Mongolia and northwestern 

Heilongjiang province. Study on rational sample size, use of auxiliary information 

and model prediction should be strengthened to improve SOCC mapping effectively. 
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