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1. Introduction  

 

Missing data is a major issue in many real world sensor networks. It can complicate the 

calculation of diagnostic statistics in an offline setting, as well as making prediction of 

processes difficult in a real time setting. The longer the period of missing data, the more 

difficult it is to mitigate its effects. In spatial sensor networks, data from neighbouring 

locations can be used to impute or forecast missing values. Efforts have been made to 

deal with missing spatio-temporal data in environmental monitoring (Glasbey, 1995; 

Smith et al, 1996, 2003) and traffic forecasting (Whitlock and Queen, 2001; van Lint et 

al, 2005; Haworth and Cheng, 2012) amongst others.  

Crucial to the use of spatio-temporal approaches for dealing with missing data is 

correctly capturing the dependency structure between locations. In networks of flows this 

can be implicit in the network structure: for instance, on road networks traffic flows from 

upstream to downstream in free flowing conditions, and queues build up in the opposite 

direction in congested conditions. Although this relationship is complicated by traffic 

signals in the urban environment, it can still be captured using physical models if flow 

data are available with sufficient spatial and temporal resolution. However, on real world 

sensor networks, the data collection system often does not capture a sufficient level of 

spatial and/or temporal granularity, or indeed the right type of data, to model the physical 

process in detail. In this study, we extend our previous work (Haworth and Cheng, 2012) 

to improve forecasting of road link travel times under missing data. We combine two 

networks; the data collection network and the underlying road network. The structure of 

the road network is used to improve spatio-temporal forecasting of missing data on the 

sensor network, which is spatially sparse.  

2. Data and Methods 

2.1 The sensor network and the road network 

The sensor network  is a system of Automatic number plate recognition (ANPR) cameras 

that record travel times, as part of Transport for London’s (TfL) London Congestion 

Analysis Project (LCAP). Automatic number plate recognition (ANPR) technology is 

used to record the elapsed time between vehicles entering and exiting a road link, and the 

individual observations are averaged at 5 minute intervals. Although the LCAP network 

is a fully connected network, it is spatially sparse, consisting only of major roads that are 



of strategic importance to TfL. Therefore, many of the spatial connections between 

LCAP links are ignored in its network structure.  

 

 
Figure 1. Connecting the LCAP and ITN Networks 

 

 

A more complete representation of London’s road network is provided by Ordnance 

Survey’s Integrated Transport Network (ITN), upon which the LCAP network lies. The 

two networks are shown in Fig. 1, illustrating the sparse coverage of the LCAP network. 

A comparison of their characteristics is provided in Table 1. In this study, we use the ITN 

to build up a more complete network structure that captures the possible flows between 

LCAP links in order to improve spatio-temporal forecasting. This is described in the 

following section.  

 

Variable LCAP ITN 

No. Links ~1500 500,000+ 

Avg. Link length (m) 2700 97 

Total Length (km) ~3800 60,000+ 

   

 

Table 1. Comparison of LCAP and ITN in the London area 



 

2.2 Methodology 

 

First, the ITN links that intersect with each of the LCAP links are identified. Following 

this, the shortest paths are calculated between each of the LCAP links on the ITN 

network, to provide a measure of network proximity. This is shown in Fig 2, and is 

described below. 

 

 
Figure 2. Connecting the LCAP and ITN Networks 

 

Fig. 2 a) shows an example of the typical relationship between LCAP and ITN links. 

Each LCAP link consists of several ITN links, and there are various paths between LCAP 

links on the ITN network. Fig. 2 b) depicts the approach we take here graphically. The 

ITN links associated with an LCAP link are viewed as a single node, with the ITN 

network forming edges between them. The arcs in the diagram represent the ITN links in 

Fig. 2 a). Shortest paths are calculated along the ITN network between all LCAP links 

using the igraph library in R statistical package. An N*N spatial weight matrix W is then 

created from these paths, where N is the number of LCAP links. The i,j elements of W 

contain the average shortest path distance between the ITN links on LCAP links i and j.  

3. Experimental setup 

 

To train the models we use the kernel regression model from Haworth and Cheng, 2012 

(Eq. 6, p. 543). For brevity, the equations are not repeated here. For each LCAP link , a 

neighbour set is constructed consisting of those LCAP links  that are within a specified 

network distance . The spatial weight matrix W is converted into a binary 

adjacency matrix, where  , 0 otherwise. When making the forecasts, we 

assume no data is being collected at the current sensor location, therefore . In 

total, the travel times of 108 LCAP links are forecast. The size of the training set is 25 

days, and k-fold cross validation is used as the training method, with k=5. The selected 

model is the one which minimises the root mean squared error criterion. A further 10 



days, immediately following the training period, are used as a validation set to evaluate 

the performance of the fitted models. 

 

3.1 Comparison Model 
 

For comparison purposes, a further model is created based on the connectivity structure 

of the LCAP network. For each LCAP link, its directly adjacent upstream and 

downstream  neighbours are used to forecast its values. The experimental setup is 

identical to that outlined above. 

4. Initial Results 

For the new model, the average RMSE of training across the 108 test links was 94.7 

seconds. This rises to 101.2 seconds for the validation data.  The RMSE of training and 

testing for the comparison model was 96.04 and 98.5 seconds respectively. The new 

model performs slightly better than the comparison model in terms of training, but 

slightly worse in terms of forecasting, indicating that the LCAP connectivity structure 

alone is a good predictor of network conditions overall. However, in terms of the 

performance of the models on individual links, the new model performed better than the 

comparison model on 46 (42%) of the 108 links, with 4 having exactly equal 

performance. This indicates that, despite the comparison model having better forecasting 

performance overall, performance can be improved on a significant number of the LCAP 

links by incorporating the ITN network structure. An extreme example of this is given in 

Fig. 3.  

 

 

Figure 3. Example of model performance 

 



5. Conclusions 

 

The approach used here demonstrates that spatio-temporal forecasts on sparse sensor 

networks can be improved by incorporating knowledge of the underlying network 

structure. In this example, network shortest paths were used to build up spatial 

neighbourhoods of road links, which were used for forecasting under the assumption of 

missing data. This study opens up a number of avenues for continuing research. Firstly, it 

is necessary to examine the characteristics of LCAP links that lead to one model being 

favoured over the other. It can be speculated that centrally located links, where the 

network is denser, will see a greater performance increase from the inclusion of the ITN 

network. Secondly, although shortest path lengths were used to define the connectivity 

structure in this study, other measures could be used. For instance, the paths could be 

weighted using other traffic variables such as historical travel times. Furthermore, the 

number of; or strength of, connections between links on the sensor network could be used 

a proxy for their degree of connectedness. A further consideration is the weighting of 

each of the members of the neighbour set. In this study they are weighted equally, but an 

inverse distance weighting could improve results further.  
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