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Outline of the Talk

Two Views of Entropy
A) Methods for Deriving Models, following Wilson
B) Substantive Insights: Entropy as Variety, Spread and Complexity

Defining Entropy: Probability (Population) Densities

Interpreting Entropy
Entropy Maximising: Deriving the Density Model

Information and Entropy

Spatial Entropy — Size and Shape and Distribution
Spatial Entropy as Complexity
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Defining Entropy: Probability (Population) Densities

Alan Wilson articulated his entropy-maximising model for a
two-dimensional spatial system — because his focus was on
interaction/transportation — but in fact most treatments of
entropy deal with one dimension: we will follow this route
here to begin with

We first define the probability as the proportion of the
population in i but we could take any attribute — we use
population because it is an easy to understand attribute of a
geographical system. We thus define the probability p; as

Pi—?
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The population P, sums to P as
P=>P
And this means that the probabilities will sum to 1
Zpi =1
Now let us define raw information in terms of p.
1

Pi

But if an event occurs and then another event occurs which is

independent of the first one, then the joint info should be
1 1 1

pip; Pi P
Now information gained should in fact be additive, we should
be able to add the first info + the second info to get this but

JE Centre for Advanced Spatial Analysis dh

Note that when the probability is small the information is large and vice versa. I.E. high
info occurs when the event is unlikely and we get a lot of info if and when it occurs




1 1 1
#=—+

PP, P P,

The only function which will allow this is the log of

log 1

P
And we thus write the information as follows

1 1 1
) =F(—)+F(—)
PP P P> >

—log(p, p,) =—log(p,)—log(p,)

£ (

Now if we take the average or expected value of all these
probabilities in the set, we multiply the info by the
probability of each and sum
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to get for n events

H = _Zpi logpl.
i=1

This is the entropy. The minimum value of this function is
clearly O which occurs when

p; =1, and therest are p, =0,Vj #i

And we can easily find out that the entropy is at a maximum
when the probabilities are all equal and H=log n when

1




Back to the entropy of two events with entropy to the log base
2 —this is the classic diagram — note P1=1-P2
Max H=log,(1/2)+log,(1/2)=1

1
005
I

0

0 0.5 1
P1=1-P2
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| wrote about all this a very long time ago — 1972, well not 50
years but 45 | And there are occasional papers since then ...
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Entropy and spatial geometry

Michael Batty, University of Reading

Summary. The concept of entropy as used in explaining locational phenomena is briefly
reviewed and it is suggested that the design of a zoning system for measuring such pheno-
mena is a non-trivial matter. An aggregation procedure based on entropy-maximizing is
suggested and applied to the Reading sub-region, and the resulting geometries are con-
trasted with certain idealized schemes.

In the last decade, several researchers have suggested that the concept of entropy
is a relevant statistic for measuring the spatial distribution of various geographic
phenomena. For example, Leopold and Langbein (1962) use a measure of
entropy in deriving the fact that the most probable longitudinal profile of rivers
has a negative-exponential form. Curry (1964) has shown that the rank-size
distribution of cities can be explained by considerations involving the definition
of entropy, and more recently, Wilson (1970) has developed a procedure for
maximizing a function of entropy which can be used to describe a host of
locational phenomena ranging from distributions of trip-making behaviour to
distributions of population. Furthermore, Mogridge (1972), in an excellent
review of the concept, demonstrates that entropy °is of great, indeed essential,
use in understanding economic and spatial systems ’.

Centre for Advanced Spatial Analysis

Michael Batty*

M Geographical Analysis
reee Volume 6, Issue 1, Version of Record online: 3 SEP 2010

Abstract | Article | References

Spatial Entropy

Abstract

A major problem in information theory concems the derivation of
a continuous measure of entropy from the discrete measure. Many analysts
have shown that Shannon’s treatment of this problem is incomplete, but
few have gone on to rework his analysis. In this paper, it is suggested
that a new measure of discrete entropy which incorporates interval size
explicitly is required; such a measure is fundamental to geography and
this statistic has been called spatial entropy. The use of the measure
is first illustrated by application to one- and two-dimensional aggregation
problems, and then the implications of this statistic for Wilson’s entropy-
maximizing method are traced. Theil’s aggregation statistic is reinterpret-
ed in spatial terms, and finally, some heuristics are suggested for the
design of real and idealized spatial systems in which entropy is at a
maximum.




Interpreting Entropy

Entropy has two aspects that are relevant to complexity. These
are based on the distribution and on the number of the
events —i.e. the size of the system in terms of the number of
objects or populations n

This immediately means there is a tradeoff between the shape
of the distribution and the number of events. In general, as
the number of events goes up —i.e. n gets bigger — then the
entropy H gets larger.

But the shape of the distribution also makes a difference.

Let us imagine that we are looking at the population density
profile from the centre for the edge of a city. This is a one-
dimensional distribution.
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We can graph this as follows:
p =1

P =—

We can calculate H as minimum 0 where p,=1, p,=0, i>1
H maximum = log n for the uniform distribution

For the negative exponential H = 10gK+iZPidi
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Basically what all this implies is that when we have an extreme
distribution, the entropy or information is zero. This means

that if the probability is 1, and the event occurs, then the
information we get is zero.

In the case where the probability is the same everywhere, if an
event occurs then the information is at a maximum.

Now also as the number of events goes up, we get more
information.

There is thus a tradeoff. We can have any system with entropy
from zero to log n. But as n goes up, then we can have a
system with very few n and greater entropy than a system
with many n but with an extreme distribution. This entropy
measures distribution as well as number; distribution is a
little like shape as the previous graphs show.
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Entropy Maximising: Deriving the Density Model

Let us link some of this to Wilson. In E-M, we choose a probability
distribution so that we let there be as much uncertainty as
possible subject to what information we know which is certain

This is not the easiest point to grasp — why would we want to
maximise this kind of uncertainty — well because if we didn’t
we would be assuming more than we knew — if we know there
is some more info, then we put it in as constraints. If we know

p=1, we say so in the constraints. Let us review the process,

Maximise H =-ZP,~ log p,
i=1

Subjectto ' p,=1 and ) pc =C
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We can think of this as a one dimensional probablity density
model where this might be population density
And we then get the classic negative exponential density function

which can be written as

exp(—Ac;
pi=1<exp<—zci>=zei(p(_ SRR W

Now we don’t know that this is a negative function, it might be
positive — it depends on how we set up the problem but in
working out probabilities wrt to costs, it implies the higher the
cost, the lower the probability of location.

We can now show how we get a power law simply by using a log

constraint on travel cost instead of the linear constraint.
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We thus maximise entropy subject to a normalisation constraint
on probabilities and now a logarithmic cost constraint of the

form
Max H = —Zpl. log p,
i=1

Subjectto ) p, =land Zpl-zf

Note the meaning of the log cost constraint. This is viewed as the
fact that travellers perceive costs logarithmically according the

Weber-Fechner law and in some circumstances, this is as it
should be.
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If we do all this we get the following model where we could

simply put logc, into the negative exponential getting

-1
C.

exp(—Alogc,) -
Zexp(—llogcl.) l ch._ ¢

P; =

A power law. But this is not the rank size relation as in the sort of

scaling that | have dealt with elsewhere. We will see if we can
get such a relation below but first let me give one reference at

this point to my GA 2010 paper qeogmphmMW

ahical Analvsis ISSN 0016-7363
Geographical Analysis 42 (2010) 395421 © 2010 The Ohio State University

Space, Scale, and Scaling in Entropy Maximizing, o
Geographical Analysis 42 (2010) 395-421 which is at SPace, Scale, and Scaling in
o . . Entropy Maximizing
http://www.complexcity.info/files/2011/06/batty-ga-
Michael Batty
2010' df Centre for Advanced Spatial Analysis (CASA), University College London (UCL), London, U.K.
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Before | look at the rank size derivation, let me show you a simple
model of how we can generate an entropy maximising
distribution which is negative exponential. We assume that we
start with a random distribution of probabilities which in fact
We can assume are resources —i.e. money

Now assume each zone has c,(t) units and two of these chosen at
random engage in swapping a small unit of their resource — say
one unit of money in each time period. In short at each time
period, two zones i and j are chosen randomly and then one of
them gives one unit of resource to another, again determined
randomly; then ¢;(t+1)=c;(t)-1 and ¢;(t+1)=c;(t)+1.

In this way, the total resources are conserved i.e. Zci ()=C

1
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Distribution of Money
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If we start with an extreme distribution with H=log n, then the

entropy reduces to that of the negative exponential

Private Sub Command1_Click()

Dim People(100) As Single 10

Money = 100

SwapMoney =1 9

n =40

Fori=1Ton

People(i) = Money 84 O (o}

'Print i, People(i)

Next i 7 o

t=1

For i = t To 1000000 5 y = -3.3401Ln(x) + 21.934
i = Int((Rnd(1) * n) + 1) b 2 _
ji=Int((Rnd(1) * n) + 1) R - 08379
If ii = jj Then GoTo 777 5

If People(ii) = 0 Then People(ii) = 1: GoTo 777
If People(jj) = 0 Then People(jj) = 1: GoTo 777
d =Rnd(1) 4 A
If d > 0.5 Then
fid = SwapMoney 3
fid = -fid
End If
People(ii) = People(ii) + fid 2 1
People(jj) = People(jj) + fid
Total=0 1
Foriz=1Ton

Total = Total + People(iz)
Next iz 0 T T

'Print i, jj, fid, fjd, People(ii), People(jj), Total 0 200 400 600 800
777 Next i
Fori=1Ton

Print i, People(i)

Next i ic | |

o= "Money This is my own program which gradually
Open NewFile For Output As #2 .
Fori=1Ton converges on an exponential as the graph
Print #2, i, People(i)
Next i

Close #2 shows after 1 million runs

End Sub
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Our last foray into generating power laws using EM involves

showing how we can get a rank size distribution.

There is a key difference between entropy-maximising location

models which tend to look at location probabilities as functions

of cost and benefit of the locations, and scaling models of city

size or firm size or income size which tend to look at

probabilities of sizes which have nothing to do with costs

Thus the problems of generating a location model or a size model
are quite different.

Thus we must maximise entropy with respect to average city size

not average locational cost and then we get the probabilities of

locating in small cities much higher than in large cities as city

size is like cost.
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It is entirely possible of course for probabilities of locating in big
cities to be higher than in small cities but as there are so many
more small cities than big cities, small ones dominate.

So we to look at the city size problem, we must substitute cost

with size and we thus set up the problem as

maxH:—Zpilogpi St Zpizl and ZpilogPizl_’

exp(-Alog B) B’
; = — pl, = —
> exp(-Alog P) 2P

i

P

And then we take the frequency as p; and then the size as P,
form the counter cumulative which is the rank and then twist

the equation round to get the rank size rule — and hey presto

we can connect up with many models that generate rank-size
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There is More than a Power Law in Zipf

Matthieu Cristelli'?, Michael Batty** & Luciano Pietronero'**

'Department of Physics, University of Rome ““la Sapienza”, Piazzale A. Moro 2, 00185 Rome, ltaly, “The Institute of Complex
Systems, CNR, Via dei Taurini 19, 00185 Rome, ltaly, *Centre for Advanced Spatial Analysis, University College London, 90
Tottenham Court Road, London W1T 4T), UK, “School of Geographical Sciences and Urban Planning, Arizona State University. P.O.
Box 875302, Tempe, AZ 85287-5302, 5London Institute for Mathematical Sciences, 35 South Street, Mayfair, London W1K 2NY,
UK.

The largest cities, the most frequently used words, the income of the richest countries, and the most wealthy
billionaires, can be all described in terms of Zipf’s Law, a rank-size rule capturing the relation between the
frequency of a set of objects or events and their size. It is assumed to be one of many manifestations of an
underlying power law like Pareto’s or Benford’s, but contrary to popular belief, from a distribution of, say,
city sizes and a simple random sampling, one does not obtain Zipf’s law for the largest cities. This pathology
is reflected in the fact that Zipf’s Law has a functional form depending on the number of events N. This
requires a fundamental property of the sample distribution which we call ‘coherence’ and it corresponds to a
‘screening’ between various elements of the set. We show how it should be accounted for when fitting Zipf’s
Law.

objects, is widely assumed to be ubiquitous for systems where objects grow in size or are fractured through

Z ipf’s Law'**, usually written as x(k) = x,; /k where x is size, k is rank, and x,is the maximum size ina set of N
competition*®. These processes force the majority of objects to be small and very few to be large. Income



Information and Entropy

There is another measure of information which is important in
spatial analysis and that is the information difference.
Imagine we have prior and posterior probability distributions

q;, Wwhere Z%Zl

p; Where ZZ:pl. =1

We could form the entropy for each and make comparisons but
there is an integrated formula based on the entropy of each
with respect to the posterior probabilities only, that is

H(p:q)=-) plogg, H(p)=-) p;logp,

I(p:q)=H(p:q)—H(p)=Zp,- logﬁf'

l
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This is the Kullback information difference formula and it is
always positive from the way we have formed it

In fact what we might do is not maximise this information
difference but minimise it and we can set up the problem as
one where we

min/ = Zpllog st sz_l and szz:_

l

This then leads to a model in which the prior probability
appears in the model as one which is moderated by the
additional information on cost, that is

g exp(=Ac,)
Zq, exp(—Ac;)
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In fact if we then set q.=1/n, that is, the uniform distribution,
then this prior probability has no effect and the model
simplifies to the usual EM model

As a parting shot on this, consider what happens when the
prior probability is equal to the space available for
population, thatis ¢, ~ Ax;

Then our model becomes

Ax. —Ac. :
pi: l eXp( Cl) and thMS pi — pl
Z Ax; exp(—Ac;) Ax;

Note that this density can in fact be derived rather differently
by developing a spatial version of entropy S and this we will
now do. It is in fact equivalent formally to |
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Spatial Entropy — Size and Shape and Distribution

Imagine that we now want to find the entropy of the probability
density which is

Ax,

1

We can simply take the expected value of the log of the inverse

of this, that is the expected value of

log— = ~log
P;

So the spatial entropy formula becomes

S = _Zpi log p; = _Zpi log f;

1

P;

If we follow through the logic of EM then we get the same
model as the one we have just shown but this time by
maximising S, not minimising |
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Now what we are doing here is using a rather different
equation — spatial entropy is really entropy with an
additional component

Let us expand it as

S = _Zpi log p; = _sz‘ logAp;

:_Zpi logpi"'zpi log Ax;

f \ This is the area size effect

This is the distribution and
the number size effect in terms of n in entropy

1

In fact this spatial entropy is really only the distribution effect
for the number size effect is cancelled out —i.e. the second
term cancels the number effect but in a convoluted way
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In fact the spatial entropy is really just the discrete
approximation to the continuous entropy which deals only
with the distribution/density not simply the size effect

We can write spatial entropy thus or entropy as

S=H+Y plogAv, H=S-) ploghx,

Now here we have an excellent definition of spatial complexity
because we have in entropy both a size and distribution
effect.

Note that the continuous equivalent of S is
§ =~ p(x)log p()

By introducing spatial entropy, we get at both distribution and
number-area size effects and are able to disaggregate this.
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Spatial Entropy as Complexity

What we can now do is examine how entropy as complexity
changes under different assumptions of the distribution and
the size.

First let us note what happens when the probability is uniform,

that is
1
Pi =—
n

log Ax,

n

Szlogn+z

Then if we also have a uniform distribution of land

Axl.:£ > Ax;/n

n
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Then we get S as

1

n

S zlogn+zllogX+leog
~ 1 —n

=log X

We could of course maximise S and then we can easily see this.

We thus have different ways of computing the components of
size and distribution and making comparisons of the shape
of the distribution — what entropy comes from this —and the
size of the distribution — what entropy comes from that

Moreover we can also employ extensive spatial disaggregation
of these log linear measures. And | refer you back to the
entropy paper in GAin 2010
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As a conclusion, let us return to Alan’s spatial interaction model
and look at its entropy — this is now

== pylogp;

-
And there are various versions of spatial entropy

- _ZPU log i;

ij

Pij

=— lo /
2Py log Ax,Ax,

These can be expanded but they are quite different: the first
assumes that the space is an ij term whereas the second
assumes space is at i and j separately — that interaction is not
a space but that space is a location. This is not just a play on
words — the ij space could be the space of the network
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To conclude

| will simply refer you to our recent paper in Geographical
Systems but the essential conclusion is that we need to
interpret what entropy means as well as maximising this

We need also to sort out dimensional considerations —in terms
of distributions and densities — really throughout this kind of
modelling we should be working with densities with spatial
entropy or with models that produce densities

J Geogr Syst (2014) 16:363-385
DOI 10.1007/s10109-014-0202-2
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Questions, maybe

There are a few applications of these ideas
contained in my two recent books

Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals

THE NEW SCIENCE
OF CITIES

MICHAEL BATTY

MIT Press, 2005 and 2013
And on my blogs www.complexity.info www.spatialcomplexity.info
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