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Defining	Entropy:	Probability	(Population)	Densities
Alan	Wilson	articulated	his	entropy-maximising	model	for	a	

two-dimensional	spatial	system	– because	his	focus	was	on	
interaction/transportation	– but	in	fact	most	treatments	of	
entropy	deal	with	one	dimension:	we	will	follow	this	route	
here	to	begin	with

We	first	define	the	probability	as	the	proportion	of	the	
population	in	i	but	we	could	take	any	attribute	– we	use	
population	because	it	is	an	easy	to	understand	attribute	of	a	
geographical	system.	We	thus	define	the	probability	pi as

P
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The	population	Pi sums	to	P	as

And	this	means	that	the	probabilities	will	sum	to	1

Now	let	us	define	raw	information in	terms	of	pi

But	if	an	event	occurs	and	then	another	event	occurs	which	is	
independent	of	the	first	one,	then	the	joint	info	should	be

Now	information	gained	should	in	fact	be	additive,	we	should	
be	able	to	add	the	first	info	+	the	second	info	to	get	this	but
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Note	that	when	the	probability	is	small	the	information	is	large	and	vice	versa.	I.E.	high	
info	occurs	when	the	event	is	unlikely	and	we	get	a	lot	of	info	if	and	when	it	occurs
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The	only	function	which	will	allow	this	is	the	log	of	

And	we	thus	write	the	information	as	follows

Now	if	we	take	the	average	or	expected	value	of	all	these	
probabilities	in	the	set,	we	multiply	the	info	by	the	
probability	of	each	and	sum	
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to	get	for	n	events

This	is	the	entropy.	The	minimum	value	of	this	function	is	
clearly	0	which	occurs	when	

And	we	can	easily	find	out	that	the	entropy	is	at	a	maximum	
when	the	probabilities	are	all	equal	and	H=log	n	when
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Back	to	the	entropy	of	two	events	with	entropy	to	the	log	base	
2	– this	is	the	classic	diagram	– note	P1=1-P2

H
(P

)

P1=1-P2

Max H=log2(1/2)+log2(1/2)=1
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I	wrote	about	all	this	a	very	long	time	ago	– 1972,	well	not	50	
years	but	45	!	And	there	are	occasional	papers	since	then	…
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Interpreting	Entropy
Entropy	has	two	aspects	that	are	relevant	to	complexity.	These	

are	based	on	the	distribution and	on	the	number of	the	
events	– i.e.	the	size	of	the	system	in	terms	of	the	number	of	
objects	or	populations	n

This	immediately	means	there	is	a	tradeoff	between	the	shape	
of	the	distribution and	the	number	of	events.	In	general,	as	
the	number	of	events	goes	up	– i.e.	n	gets	bigger	– then	the	
entropy	H	gets	larger.

But	the	shape	of	the	distribution	also	makes	a	difference.	

Let	us	imagine	that	we	are	looking	at	the	population	density	
profile	from	the	centre	for	the	edge	of	a	city.	This	is	a	one-
dimensional	distribution.
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We	can	graph	this	as	follows:

We	can	calculate	H	as	minimum	0	where	p1=1,	pi=0,	i>1

H	maximum	=	log	n	for	the	uniform	distribution

For	the	negative	exponential	
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Basically	what	all	this	implies	is	that	when	we	have	an	extreme	
distribution,	the	entropy	or	information	is	zero.	This	means	
that	if	the	probability	is	1,	and	the	event	occurs,	then	the	
information	we	get	is	zero.

In	the	case	where	the	probability	is	the	same	everywhere,	if	an	
event	occurs	then	the	information	is	at	a	maximum.

Now	also	as	the	number	of	events	goes	up,	we	get	more	
information.

There	is	thus	a	tradeoff.	We	can	have	any	system	with	entropy	
from	zero	to	log	n.	But	as	n	goes	up,	then	we	can	have	a	
system	with	very	few	n	and	greater	entropy	than	a	system	
with	many	n	but	with	an	extreme	distribution.	This	entropy	
measures	distribution as	well	as	number;	distribution	is	a	
little	like	shape	as	the	previous	graphs	show.
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Entropy	Maximising:	Deriving	the	Density	Model
Let	us	link	some	of	this	to	Wilson.	In	E-M,	we	choose	a	probability	

distribution	so	that	we	let	there	be	as	much	uncertainty	as	
possible	subject	to	what	information	we	know	which	is	certain

This	is	not	the	easiest	point	to	grasp	– why	would	we	want	to	
maximise	this	kind	of	uncertainty	– well	because	if	we	didn’t	
we	would	be	assuming	more	than	we	knew	– if	we	know	there	
is	some	more	info,	then	we	put	it	in	as	constraints.	If	we	know	
p=1,	we	say	so	in	the	constraints.	Let	us	review	the	process,

Maximise

Subject	to																							and
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We	can	think	of	this	as	a	one	dimensional	probablity	density	
model	where	this	might	be	population	density

And	we	then	get	the	classic	negative	exponential	density	function	
which	can	be	written	as

Now	we	don’t	know	that	this	is	a	negative	function,	it	might	be	
positive	– it	depends	on	how	we	set	up	the	problem	but	in	
working	out	probabilities	wrt	to	costs,	it	implies	the	higher	the	
cost,	the	lower	the	probability	of	location.	

We	can	now	show	how	we	get	a	power	law	simply	by	using	a	log	
constraint	on	travel	cost	instead	of	the	linear	constraint.
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We	thus	maximise	entropy	subject	to	a	normalisation	constraint	
on	probabilities	and	now	a	logarithmic	cost	constraint	of	the	
form

Max

Subject	to																		and

Note	the	meaning	of	the	log	cost	constraint.	This	is	viewed	as	the	
fact	that	travellers	perceive	costs	logarithmically	according	the	
Weber-Fechner	law	and	in	some	circumstances,	this	is	as	it	
should	be.
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If	we	do	all	this	we	get	the	following	model	where	we	could	
simply	put													into	the	negative	exponential	getting

A	power	law.	But	this	is	not	the	rank	size	relation as	in	the	sort	of	
scaling	that	I	have	dealt	with	elsewhere.	We	will	see	if	we	can	
get	such	a	relation	below	but	first	let	me	give	one	reference	at	
this	point	to	my	GA	2010	paper
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Space,	Scale,	and	Scaling	in	Entropy	Maximizing,	
Geographical	Analysis	42 (2010)	395–421	which	is	at
http://www.complexcity.info/files/2011/06/batty-ga-
2010.pdf
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Before	I	look	at	the	rank	size	derivation,	let	me	show	you	a	simple	
model	of	how	we	can	generate	an	entropy	maximising	
distribution	which	is	negative	exponential.	We	assume	that	we	
start	with	a	random	distribution	of	probabilities	which	in	fact	
we	can	assume	are	resources	– i.e.	money

Now	assume	each	zone	has	ci(t)	units	and	two	of	these	chosen	at	
random	engage	in	swapping	a	small	unit	of	their	resource	– say	
one	unit	of	money	in	each	time	period.	In	short	at	each	time	
period,	two	zones	i	and	j	are	chosen	randomly	and	then	one	of	
them	gives	one	unit	of	resource	to	another,	again	determined	
randomly;	then	ci(t+1)=ci(t)-1	and	cj(t+1)=cj(t)+1.

In	this	way,	the	total	resources	are	conserved	i.e.	 å =
i

i Ctc )(
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Now	this	is	like	a	process	of	random	collisions.	In	much	the	same	
way	that	we	can	show	how	networks	generate	large	hubs	
through	preferential	attachment,	and	the	way	cities	get	bigger	
or	smaller	through	random	growth	through	proportionate	
effect,	then	population	units	gain	or	lose	in	the	same	kind	of	
competitive	fashion

This	leads	to	a	negative	exponential	distribution
It	is	kind	of	obvious	but	we	need	to	demo	it	and	the	following	

program	shows	how	this	occurs:
The	Random	Collisions	Model
Note	this	model	starts	with	something	different	from	a	uniform	

distribution	– an	extreme	distribution	with	H=0	and	then	
entropy	increases	as	the	collisions	move	the	money	around
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Private	Sub	Command1_Click()
Dim	People(100)	As	Single
Money	=	100
SwapMoney	=	1
n	=	40
For	i	=	1	To	n
People(i)	=	Money
'Print	i,	People(i)
Next	i
t	=	1
For	i	=	t	To	1000000
ii	=	Int((Rnd(1)	*	n)	+	1)
jj	=	Int((Rnd(1)	*	n)	+	1)
If	ii	=	jj	Then	GoTo	777
If	People(ii)	=	0	Then	People(ii)	=	1:	GoTo	777
If	People(jj)	=	0	Then	People(jj)	=	1:	GoTo	777
d	=	Rnd(1)
If	d	>	0.5	Then
fid	=	SwapMoney
fjd	=	-fid
End	If
People(ii)	=	People(ii)	+	fid
People(jj)	=	People(jj)	+	fjd
Total	=	0
For	iz	=	1	To	n
Total	=	Total	+	People(iz)
Next	iz
'Print	ii,	jj,	fid,	fjd,	People(ii),	People(jj),	Total
777	Next	i
For	i	=	1	To	n
Print	i,	People(i)
Next	i
NewFile	=	"Money.txt"
Open	NewFile	For	Output	As	#2
For	i	=	1	To	n
Print	#2,	i,	People(i)
Next	i
Close	#2
End	Sub

y = -3.3401Ln(x) + 21.934
R2 = 0.8379
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This	is	my	own	program	which	gradually	
converges	on	an	exponential	as	the	graph	
shows	after	1	million	runs

If	we	start	with	an	extreme	distribution	with	H=log	n,	then	the	
entropy	reduces	to	that	of	the	negative	exponential
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Our	last	foray	into	generating	power	laws	using	EM	involves	
showing	how	we	can	get	a	rank	size	distribution.	

There	is	a	key	difference	between	entropy-maximising	location	
models	which	tend	to	look	at	location	probabilities	as	functions	
of	cost	and	benefit	of	the	locations,	and	scaling	models	of	city	
size	or	firm	size	or	income	size	which	tend	to	look	at	
probabilities	of	sizes which	have	nothing	to	do	with	costs	

Thus	the	problems	of	generating	a	location	model	or	a	size	model	
are	quite	different.

Thus	we	must	maximise	entropy	with	respect	to	average	city	size
not	average	locational	cost and	then	we	get	the	probabilities	of	
locating	in	small	cities	much	higher	than	in	large	cities	as	city	
size	is	like	cost.
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It	is	entirely	possible	of	course	for	probabilities	of	locating	in	big	
cities	to	be	higher	than	in	small	cities	but	as	there	are	so	many	
more	small	cities	than	big	cities,	small	ones	dominate.	

So	we	to	look	at	the	city	size	problem,	we	must	substitute	cost	
with	size	and	we	thus	set	up	the	problem	as	

And	then	we	take	the	frequency	as						and	then	the	size	as					,	
form	the	counter	cumulative	which	is	the	rank	and	then	twist	
the	equation	round	to	get	the	rank	size	rule	– and	hey	presto	
we	can	connect	up	with	many	models	that	generate	rank-size
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Information	and	Entropy
There	is	another	measure	of	information	which	is	important	in	

spatial	analysis	and	that	is	the	information	difference.	
Imagine	we	have	prior	and	posterior	probability	distributions

We	could	form	the	entropy	for	each	and	make	comparisons	but	
there	is	an	integrated	formula	based	on	the	entropy	of	each	
with	respect	to	the	posterior	probabilities	only,	that	is		
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This	is	the	Kullback	information	difference	formula	and	it	is	
always	positive	from	the	way	we	have	formed	it	

In	fact	what	we	might	do	is	not	maximise	this	information	
difference	but	minimise	it and	we	can	set	up	the	problem	as	
one	where	we

This	then	leads	to	a	model	in	which	the	prior	probability	
appears	in	the	model	as	one	which	is	moderated	by	the	
additional	information	on	cost,	that	is	

å åå ===
i i

iii
i i

i
i Ccpandpst

q
ppI 1logmin

å -
-

=

i
ii

ii
i cq

cqp
)exp(
)exp(

l
l



Centre for Advanced Spatial Analysis, University College LondonCentre for Advanced Spatial Analysis

In	fact	if	we	then	set	qi=1/n,	that	is,	the	uniform	distribution,	
then	this	prior	probability	has	no	effect	and	the	model	
simplifies	to	the	usual	EM	model		

As	a	parting	shot	on	this,	consider	what	happens	when	the	
prior	probability	is	equal	to	the	space	available	for	
population,	that	is

Then	our	model	becomes

Note	that	this	density	can	in	fact	be	derived	rather	differently	
by	developing	a	spatial	version	of	entropy	S	and	this	we	will	
now	do.	It	is	in	fact	equivalent	formally	to	I		
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Spatial	Entropy	– Size	and	Shape	and	Distribution
Imagine	that	we	now	want	to	find	the	entropy	of	the	probability	

density	which	is

We	can	simply	take	the	expected	value	of	the	log	of	the	inverse	
of	this,	that	is	the	expected	value	of	

So	the	spatial	entropy	formula	becomes	

If	we	follow	through	the	logic	of	EM	then	we	get	the	same	
model	as	the	one	we	have	just	shown	but	this	time	by	
maximising	S,	not	minimising	I
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Now	what	we	are	doing	here	is	using	a	rather	different	
equation	– spatial	entropy	is	really	entropy	with	an	
additional	component

Let	us	expand	it	as

In	fact	this	spatial	entropy	is	really	only	the	distribution	effect	
for	the	number	size	effect	is	cancelled	out	– i.e.	the	second	
term	cancels	the	number	effect	but	in	a	convoluted	way
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This	is	the	distribution	and	
the	number	size effect	in	terms	of	n	in	entropy

This	is	the	area	size effect
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In	fact	the	spatial	entropy	is	really	just	the	discrete	
approximation	to	the	continuous	entropy	which	deals	only	
with	the	distribution/density	not	simply	the	size	effect

We	can	write	spatial	entropy	thus	or	entropy	as

Now	here	we	have	an	excellent	definition	of	spatial	complexity	
because	we	have	in	entropy	both	a	size	and	distribution	
effect.

Note	that	the	continuous	equivalent	of	S	is	

By	introducing	spatial	entropy,	we	get	at	both	distribution	and	
number-area	size	effects	and	are	able	to	disaggregate	this.	
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Spatial	Entropy	as	Complexity	
What	we	can	now	do	is	examine	how	entropy	as	complexity	

changes	under	different	assumptions	of	the	distribution	and	
the	size.

First	let	us	note	what	happens	when	the	probability	is	uniform,	
that	is

Then	if	we	also	have	a	uniform	distribution	of	land		
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Then	we	get	S	as

We	could	of	course	maximise	S	and	then	we	can	easily	see	this.	

We	thus	have	different	ways	of	computing	the	components	of	
size	and	distribution	and	making	comparisons	of	the	shape	
of	the	distribution	– what	entropy	comes	from	this	– and	the	
size	of	the	distribution	– what	entropy	comes	from	that

Moreover	we	can	also	employ	extensive	spatial	disaggregation	
of	these	log	linear	measures.	And	I	refer	you	back	to	the	
entropy	paper	in	GA	in	2010	
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As	a	conclusion,	let	us	return	to	Alan’s	spatial	interaction	model	
and	look	at	its	entropy	– this	is	now	

And	there	are	various	versions	of	spatial	entropy

These	can	be	expanded	but	they	are	quite	different:	the	first	
assumes	that	the	space	is	an	ij	term	whereas	the	second	
assumes	space	is	at	i	and	j	separately	– that	interaction	is	not	
a	space	but	that	space	is	a	location.	This	is	not	just	a	play	on	
words	– the	ij	space	could	be	the	space	of	the	network	
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To	conclude
I	will	simply	refer	you	to	our	recent	paper	in	Geographical	

Systems	but	the	essential	conclusion	is	that	we	need	to	
interpret	what	entropy	means	as	well	as	maximising	this

We	need	also	to	sort	out	dimensional	considerations	– in	terms	
of	distributions	and	densities	– really	throughout	this	kind	of	
modelling	we	should	be	working	with	densities	with	spatial	
entropy	or	with	models	that	produce	densities
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Questions,	maybe
There	are	a	few	applications	of	these	ideas	

contained	in	my	two	recent	books

MIT	Press,	2005	and	2013
And	on	my	blogs		www.complexity.info www.spatialcomplexity.info


