Java Simple Variable Types:

The table below gives the simple types provided by the Java core language. The ability to have variables that are Objects obviously extends this greatly. The storage space a computer should need for them is given in binary bits (a single 1 or 0). This isn’t too important – the main thing to realize is that the shorter the length you can squeeze your data into, the faster your program will run. Note that the simple types have all lowercase names. 
	Integers:
	Storage space
	Aprox. Max and Min Value

	long
	64 bits
	±9223372036854775807

	int
	32 bits
	±2147483647

	short
	16 bits
	±32767

	byte
	8 bits
	±127

	Floating Point :

	double
	64 bits
	1.7e±308

	float
	32 bits
	3.4e±38

	Characters : 

	String*
	N/A
	N/A

	char
	8 bits
	N/A

	boolean
	1 bit
	true or false


* Note, String is not a simple type, but it’s so useful it deserves a mention here. It’s a Class whose Objects store multiple chars like “Ted Maul” or “The joy of GIS”, i.e. text fragments. The simple way to make such Objects is, for example…

String happiness = "a warm bed.";

Which is equivalent to…

String happiness = new String("a warm bed.");

The major thing you’ll want to watch out for with Strings is comparing two of them. This isn’t done with the equals sign, but thus, for example…

if (happiness.equals("a warm heart")) {doSomething();}
To add two strings together, use a “+”. For example…

String sentence = "Happiness is " + happiness;

System.out.println(sentence);

Outputs: “Happiness is a warm bed”
Keywords:

There are some words that you can’t use for variable names (or even the names of blocks and Classes). These words are used by the Java core for other purposes, and things will go badly wrong if you try and use them. 

abstract, assert, double, int, strictfp, boolean, else, interface, super, break, extends, long, switch, byte, final, native, synchronized, case, finally, new, this, catch, float, package, throw, char, for, private, throws, class, goto, protected, transient, const, if, public, try, continue, implements, return, void, default, import, short, volatile, do, instanceof, static, while, enum. Also reserved are: true, false, null.
Operators:

The basic numerical operators you’ll probably use are…

+
Addition


- 
Subtraction

*
Multiplication


/
Division

%
Modulus
Gives remainders, e.g., (11.5 % 5) = 1.5

++
Increment
E.g., 
int i = 1; 


i++; 

i now equals 2.

Note that <word> is used in Java 1.5 in a different way. It also introduced the syntax @word and “…”. We’ll look at these later in the course. 

Operator precedence
Full details of the precedence of different operators can be found at…

http://download.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html
Objects
Classes are like photocopy originals for Objects. Usually we make an Object from a Class. 
Point pointObject = new Point();

The Object contains all the code in the Class.

Note: we can make two labels point to the same Object.


Point point1 = new Point(); 


Point point2 = point1;

Anything done to point2 will now also be done to point1. If we reassign point1 to a new Point, however, point2 will keep the contents that were in point1 rather than getting a new Point as well.


point1 = new Point();

The null value
When we declare an Object, the computer is obviously not sure how large the information is that we’ll be putting into it is. In this case it can’t set aside an absolute chunk of memory so it sets aside a small chunk, tells itself that this space will be enlarged in the future, and puts a temporary value in it. This value is ‘null’ which is a special value that just means we haven’t decided what it will be yet. If your variable declaration is outside the block it is assigned in, you may also have to set your variable to null manually to get it to compile.
