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Models of migration:
observations and judgements

Frans Willekens
Netherlands Interdisciplinary Demographic Institute, The Hague

6.1 Introduction
The monitoring of international migration in Europe calls for an adequate repre-
sentation of migration processes and adequate data on the processes.1 Models are
abstract representations of some portion of the real world. They are important for
our understanding of the world. When the founding father of econometrics, Jan
Tinbergen, received the Nobel Prize in 1969, he delivered the Nobel Prize Lecture.
In it, he asserted that models force us to present an internally consistent theory and
to confront that theory with reality (Tinbergen 1981:17). Around the same time,
Britton Harris, a founding father of quantitative urban planning research, viewed
properly constructed models as theories (Harris 1983). More recently, Tom Burch
has expressed the view that models are the central element of scientific knowledge
(Burch 1999, 2003). In his view, a model represents theory when it starts from
empirical observations and arrives at an abstract and therefore general description
of the real world (Burch 2003:269). Burch argues that models do not have to be
true to be useful. Sufficient realism to the purpose at handsupports understanding,

1 For a discussion, see e.g. Willekens (1994) and Chapters 2 to 5 of this book.
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explanation, prediction and policy guidance. The models that are reviewed in this
chapter are abstract but they acknowledge that some people are more likely to
migrate than other people and that the likelihood of migration and the directions
of migration are determined by characteristics of potential migrants, by contextual
factors at the place of origin (e.g. push factors) and at the place of destination (e.g.
pull factors) and intervening factors. The models also acknowledge the fact that the
occurrence and timing of migration can never be predicted with certainty, which
points to the role of chance. Finally, the models provide a vehicle for integrating
systematic factors and random factors in the prediction of migration.

The aim of this chapter is to provide a perspective on the modelling of migration
that distinguishes between systematic and random factors and that accommodates
several migration measures and several data types, including statistical and judge-
mental data. Migration is a renewable or repeatable event. Renewable events are
characterised by quantum and tempo. The quantum or level of migration is measured
by the number of migrants during a period of time, the share of migrants in a
population, or the rate of migration. These measures are related in some way.
The tempo refers to the timing of migration, more particularly the ages at which
migration occurs and the interval between successive migrations. The migration
models are rooted in survival models that have been developed for time-to-event
data, where the event is a transition from one state of existence to another. Migra-
tion models are transition models. The dependent variable is a count, a rate or a
probability.

This chapter consists of six sections. Section 6.2 is a non-technical discussion of
issues in migration modelling. The issues include the distinction between migrations
and migrants, the spatial pattern of migration and the age structure of migrants.
The section also introduces the use of regression models for predicting migration
flows from incomplete data. Section 6.3 reviews the essentials of probability theory.
Section 6.4 is the main part of the chapter. It is a review of migration models from the
perspective of probability theory. Different models are associated with different data
types. Harmonisation of migration data and comparison of migration levels in space
and time require that one data type can be converted into another type. Probability
models serve that function. Some models predict the number of migrants during a
given interval, others predict the probability that a randomly observed individual
is a migrant, while still other models predict the rate of migration. The parameters
of the probability models are generally estimated from observations on migration.
Empirical evidence on migration is often lacking, incomplete or of questionable
quality. Parameters estimated from inadequate data may be misleading. To obtain
accurate parameter estimates, hard evidence may be augmented by soft evidence
such as expert opinions and judgements. Section 6.5 discusses migration modelling
in the absence of adequate data. The method, which is widely used in migration
analysis, is presented as a special case of the EM (expectation–maximisation)
algorithm. The EM algorithm is the most widespread statistical method for model
estimation when data are incomplete. The chapter demonstrates that the modelling
of migration can benefit from recent developments in modelling of life events and
life histories. Section 6.6 concludes the chapter.
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6.2 Data types and data structure
Migration is an event and the person who migrates is a migrant. The event must
be properly defined. Any migration involves relocation but not all relocations are
migrations. Migration is generally defined as a change of usual residence (address)
beyond administrative boundaries. Relocations that do not involve a change of
address do not qualify as migrations. They may be travel, commuting or temporary
change of residence. These spatial movements may need to be considered because
they may lead to a migration. The administrative unit considered in the definition
of migration may be a village, a town, a district or a country. The general definition
of the event does not change with the spatial unit. The definition of migration often
involves a temporal dimension – an intended duration of stay or an actual duration
of residence. Sometimes relocation beyond an administrative boundary involves a
change of address but does not meet the duration criterion and is therefore not
viewed as a migration. The migration models reviewed in this chapter focus on the
spatial dimension of migration and disregard the time dimension. Any relocation
across administrative boundaries involving a change of address is a migration
irrespective of the intended or actual duration of stay at the destination. If the
address is changed for a very small duration, the event is seen as a migration.
Migration is said to be an event in continuous time. The person relocating beyond
administrative boundaries is a migrant.

A major problem in migration studies is the confusion that exists between concept
and measurement. Although the concept of migration is unambiguous, for practical
reasons migration is often defined in terms of its measurement. For instance, relo-
cation (a change of address) is sometimes measured by comparing the addresses
at two points in time, a fixed or variable number of years apart (one year, five
years, lifetime). If the addresses are in different administrative units, a migration
is said to have occurred although the event of migration has not been recorded.
Several authors therefore make a distinction between migrant data that result from a
comparison of addresses at two points in time and migration data. Different lengths
of the time interval have occupied researchers for years (see e.g. Long and Boertlein
1981; Kitsul and Philipov 1981; Courgeau 1982; Rogers et al. 2003b). As early as
1973, Courgeau (1973) distinguished between migration and migrant. A migration
is an event and a migrant is a person.

Events occur in continuous time, i.e. an event may occur at any time. Although
an event occurs in continuous time it is generally not feasible to record the exact
time or date of the event. The month or year of occurrence is recorded instead,
i.e. the date of the event is recorded in discrete time. The measurement approach
that focuses on events and records the timing of events in continuous or discrete
time is referred to as the event-based approach (Willekens 2001). A different
approach is to measure events indirectly by comparing the place of residences at two
points in time. For instance, in the United States census, migrations are measured
by comparing the place of residence at census night and the place of residence
five years prior to the census. This approach is the status-based approach. The
status-based measurement of migration distinguishes time intervals and therefore
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takes place in discrete time. The distinction between continuous time and discrete
time and the distinction between the event-based approach and the status-based
approach are essential. In the literature on migration, the measurement of events
in continuous or discrete time has been referred to as the movement approach and
the measurement of a migration by comparing places of residence at two points in
time as the transition approach (Ledent 1980; Rees and Willekens 1986). Following
Courgeau (1973), the event-based type of data is often referred to as migration data
and the status-based type of data as migrant data. Other authors distinguish between
direct transitions (event-based) and discrete-time transitions (status-based).

The different ways of measuring migration lead to different data types. The
distinction between the event-based approach and the status-based approach has
been accepted in the literature as a basis for a typology of data types associated
with the measurement of migration (see e.g. Rees and Willekens 1986; Bell et al.
2002:437; Duke-Williams and Blake 1999; Kupiszewski and Kupiszewska 2003).
The authors also discuss the sources of the differences. Typically, event data are
associated with population registers and (discrete-time) transition data with popu-
lation censuses.

Events have characteristics and persons have characteristics and these should be
kept separate. Characteristics of a migration include the origin and destination of
migration, and the reason for migration. Examples include rural–urban migration,
international migration by country of origin and country of destination, marriage
migration, family reunion, job-related migration and forced migration. Note that
the destination is the current place of residence, which is also a characteristic of the
person who migrates, i.e. the migrant. Age, sex, level of education, marital status,
employment status, country of birth and country of residence at a given time are
characteristics of migrants. In the present chapter and in life history analysis in
general, age is treated differently from the other characteristics. Age is a duration
variable, which measures the time elapsed since a reference event or event origin.
Any event can be selected as the event origin (e.g. birth, marriage, last migration).
If the reference event is birth, the duration variable is age. If, on the other hand,
the reference event is the last migration, the duration variable is the duration
of current residence. The personal characteristics except age are referred to as
covariates.

The modelling framework presented in this chapter is rooted in the multivariate
analysis of time-to-event data, also known as multistate survival analysis. In multi-
state analyses a personal attribute such as the place of residence is denoted as a
state and the variable that identifies the state is the state variable. The collection
of all possible states is the state space. In mathematics and engineering, multistate
models are known as state-space models. A change of attribute, i.e. a change of
state, is a transition. In this chapter two key concepts are distinguished. The first
is state occupancy. It is the state occupied at a given point in time (e.g. at a given
exact age). The second is the state transition. It refers to a change in state occu-
pied. Transitions may be expressed in continuous time or discrete time (Andersen
et al. 1993:93). Transitions in continuous time are referred to as direct transitions
or events (Rajulton 1999:5). Discrete-time transitions are identified by comparing
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states occupied at two consecutive points in time (t�, e.g. the region of residence
at t1 and the region of residence at t2.

Characteristics of migrations and migrants are specified at the individual level.
An individual occupies an address and has a set of attributes. At the population
level, the distribution of addresses and attributes is the subject of study. With a
distribution is associated a data structure: age structure, covariate structure, motiva-
tional structure and spatial structure. The covariate structure relates to the attributes
of the migrants, e.g. country or region of birth and sex, but also employment status
and marital status. The motivational structure relates to the reasons for migration.
The spatial structure relates to the origins and destinations of migrations. In the
study of migration, the spatial structure is of particular relevance. The origins
and destinations of migration flows define a spatial pattern. The spatial distribu-
tion of potential destination locations, their attributes and the interlinkages that
connect them shape migration flows in ways which accord them spatial struc-
ture that is likely to affect the directions of subsequent migrations (Rogers et al.
2001). When residents of a given area are more likely to move to a particular
destination rather than to another destination, a spatial dependence exists. Spatial
dependences generate spatial structure. The modelling framework proposed in this
chapter captures different spatial dependences and spatial structures. Based on a
review of the recent literature on spatial structure, Bell et al. (2002:436) argued
that four broad dimensions of spatial structure could be recognised, relating to
(6.1) migration intensities, (6.2) migration distance, (6.3) migration connectivity
and (6.4) the effect of migration on the redistribution of the population. Recently,
Rogers et al. (2001, 2002a,b, 2003a) proposed statistical models to capture the
spatial structure of migration flows or a migration system. The approach is adopted
in this chapter. The proposed framework encompasses different types of spatial
dependence. Consider the following examples. Spatial dependence is absent if the
destination is not affected by the origin of the migrant. The spatial focus, which is
the concentration of migration in a few flows, is another example. The spatial focus
is measured using a variety of indices to capture the extent to which migration flows
between regions are concentrated or dispersed (Plane and Mulligan 1997; Rogers
and Sweeney 1998; Rogers and Raymer 1998). The study of spatial focusing also
includes the spatial dominance exerted in varying degrees by destinations on origins
(Pooler 1992).

Each structure calls for a different modelling approach that may be logically inte-
grated in the comprehensive framework. The age structure is modelled by models
of age (duration) dependence. The Rogers–Castro model migration schedule is an
example (see Chapter 8). The covariate structure is described by transition rate
models and logistic regression models. The spatial structure is captured by spatial
interaction models. Conventional spatial interaction models capture the effects of
distance on the level and direction of migration flows (see e.g. Mueser 1989; Sen
and Smith 1995). Most spatial interaction models today include other variables.
Underlying the various spatial interaction models of migration has been a recog-
nition that the decision to move both shapes and is shaped by the population
geography within which the movement takes place. The spatial structure changes
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over time and, although the spatial structure is often remarkably stable even in
periods of socio-economic change, models of spatial structure should be able to
capture continuity and change. In the unlikely case that the four structures are
independent, the structures can be modelled separately. Different dependences or
interaction effects are identified and integrated into the framework. For instance, the
age structure of migration may differ by origin and/or destination and/or covariate
and/or reason for migration.

A unified perspective on the modelling of migration flows has four significant
advantages. First, it provides a single, comprehensive framework for the analysis of
data on migration. Data may be of different types. Second, it provides a framework
for the harmonisation of migration statistics. Migration data are obtained in many
different ways. The estimation of comparable indicators of levels and trends of
migration (and direction of migration) and the comparative analysis of patterns of
migration require comparable data or techniques for converting one data type into
another, e.g. migrant data into migration data.

Third, it provides a framework for theprediction (estimation) of missing data
on migration. The prediction of a missing value or a set of missing values on the
basis of available data is similar to the imputation of missing values. Imputation is
receiving much attention in the literature. Methods for statistical data imputation
may be divided into two broad groups: model imputation and donor imputation. In
model imputation, the imputed values are directly derived from a data model, i.e. a
statistical or demographic model of the data. Common data models take the format
of regression models. The regression model is estimated from the available data
that may be augmented with qualitative information on migration (expert opinion,
judgemental data). In donor imputation, the imputed values are derived from a
set of observed values (donors). The imputed value is based on information in
the closest valid record (nearest neighbour matching characteristics that are not
missing). Post-imputation edits (post-editing) make sure that the nearest neighbour
is close enough to be used as a donor. All available auxiliary information is used
to assure a best estimate or imputation. The estimation of missing migration data
may benefit from the literature on imputation. Donor imputation is not considered
in this chapter.

A fourth advantage of a unified perspective is that seemingly different migration
models may be grouped into classes of models. For instance, the gravity model, the
entropy model and the log-linear model of interregional migration have a common
structure that links them to the family of generalised linear models (Willekens 1983).
The migration pool model, which is much used in regional population projections,
is a special case of the origin–destination migration flow model. The migrant pool
model2 is a migration flow model with the origin–destination interaction removed.

2 A survey of European official subnational population projection practices in the 1990s by van Imhoff et al. (1994)
revealed that one variant in common use is the migration pool model. In the migration pool model, migration is projected
in two stages. The first stage is the projection of the number of outmigrations from each region. The migrants are
placed in a common pool. In the second stage, the migrations in the pool are distributed over the possible destinations.
For a recent illustration of the two-stage modelling of migration, see van Wissen et al. (2005) and Stillwell (2005).
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Several authors have assessed the impact of choice of migration model in the
context of regional population projections (Kupiszewski and Kupiszewska 2003;
Wilson and Bell 2004; Stillwell 2005; van Wissen et al. 2005).

The framework for the modelling of migration is still incomplete. Four limitations
are singled out. First, it does not include a measure of the reliability of the estimates
or the degree of confidence that one may attach to the estimates. Second, it does
not cover the indirect estimation of migration from data on populations at two
points in time and natural increase during the period. Third, it is of no use to
estimate undocumented migration if undocumented migrants are not included in the
aggregate data or if qualitative information (e.g. expert opinion, educated guess) is
lacking. Fourth, the framework does not yet include a unified approach to model
temporal changes in migration flows. In the 1980s, Plane and Rogerson (1986) and
Jackson et al. (1990) proposed causative matrices to link matrices of migration rates
from one time period to another and to extrapolate migration rates using a geometric
regression based on two data points. The causative method was recently discussed
by De Mesnard (2004) in the context of structural changes in input–output analysis.
The method is not considered in this chapter.

6.3 Probability models: generalities
Observations on migration are manifestations of a migration process. People migrate
at different times in different directions for different reasons. The migration process
that is revealed to the observer depends on the observation, i.e. the measurement of
the migration process. The true migration process is often referred to as the under-
lying process. Data models describe the observations while process models describe
the underlying process. Our aim is to model processes rather than observations on
the processes.

Migration is the result of several factors. They include personal factors and
contextual or situational factors. The latter include push, pull factors and intervening
factors. Migration is however also an outcome of chance, i.e. random factors. As a
consequence, an observation on migration is in part a result of chance. To separate
the effects of systematic factors from the effects of random factors, the chance
process is made explicit, which is done by specifying a probability model rather than
a deterministic model. A probability model is a mathematical representation of a
random phenomenon (see e.g. Taylor and Karlin 1998). The variable that describes
an observation or a set of observations is a random variable and the distribution
of the random variable reflects the random distribution of the observations. Many
authors do not use random variables but work in terms of variates. A variate
is a generalisation of the idea of a random variable. It has similar probabilistic
properties but is defined without reference to a particular probabilistic experiment
(Evans et al. 2000:4). A variate is the set of all random variables that obey a given
probabilistic law. A multivariate is a vector or set of elements, each of which is
a variate. Different types of observations (data types) are represented by different
variates. Counts are represented by Poisson variates. Like counts, they can take on
only nonnegative integer values. The Poisson model is the probability model for
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counts. A response variable that has only two categories (yes, no; success, failure)
is a binary response variable. A single observation may be viewed as the outcome
of a Bernoulli trial, and a sequence of observations as a sequence of Bernoulli
trials. The number of successes in a number of trials is a binomial variate. The
number of failures before the first success is a geometric variate, and the number
of failures before the kth success is a negative binomial variate. A variate may take
on several values (a finite number in the case of a discrete variate and an infinite
number in the case of a continuous variate). In this chapter we consider discrete
variates. With each value of the discrete variable may be associated a probability,
and the distribution of the values is a probability distribution. The distribution of
observations (empirical distribution) is approximated by a theoretical distribution,
such as the Poisson distribution and the binomial distribution.

The probability distributions describe the random phenomenon. Theoretical distri-
butions are fully characterised by one parameter or a few parameters. For instance,
the normal distribution has two parameters (mean and variance). The Poisson distri-
bution has a single parameter (mean and variance are equal). The values of the
parameters of the distributions depend on the systematic factors such as personal
characteristics and situational variables. In order to predict the parameter value from
the factors (predictors), the parameter may need to be transformed to assure that the
predicted value is within the range of acceptable values. The Poisson distribution
has a single parameter, which must be nonnegative. To assure that the value is
nonnegative irrespective of the values of the systematic factors or predictors, the
log (logarithmic) transformation is used. The binomial distribution has a single
parameter too – the probability of success – generally denoted by p for probability.
Its value must be between 0 and 1, and to assure that the requirement is met, a
logit transformation is often used to relate the parameter to the systematic factors.
The logit transformation imposes a logistic distribution onto p. That means that,
as the predictors vary from −� to +�, the parameter p varies between 0 and 1
following a cumulative logistic distribution. Alternative transformations include the
probit (cumulative normal distribution) and the log-log transformation (cumulative
extreme value distribution).

Now we consider the Poisson model and the logit model in more detail. The
Poisson variate describes the number of migrations during an interval of unit length
(e.g. year, month). The number of migrations is not restricted in any way. Subjects
in a (sample) population may experience an event more than once during the unit
interval. The probability of observing n migrations during the interval is given by
the Poisson model

Pr�N = n� = �n

n! exp�−��� (6.1)

where N is the variate denoting the number of migrations, n is the observed number
of migrations during a unit interval, and � is the expected number of migrations
during the unit interval. The latter is the parameter of the Poisson model. Note that
� is not the same as the migration rate. The migration rate is the expected number
of migrations during the unit interval per person, i.e. the number of migrations per
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person-year or person-month. It is obtained by dividing the number of migrations
during the interval by the total time spent during the interval by all subjects
combined. The migration rate will be denoted by�.

The parameter of the Poisson model may be made dependent on covariates:

E 	N
 = � = exp ��0 + �1Z1 + �2Z2 + · · ·� � (6.2)

The model may be written as a log-linear model:

ln � = �0 + �1Z1 + �2Z2 + · · · � (6.3)

In principle, Zp can be any covariate. In conventional log-linear analysis, all covari-
ates are discrete or categorical. The observations on event occurrences may therefore
be arranged in a contingency table. The covariates refer to rows, columns, layers
and combinations of these (to represent interaction effects). Log-linear models of
age and spatial structures of migration flows are studied by Rogers et al. (2003a)
among others.

The migration rate associated with the parameter of the Poisson model is the
expected number of migrations divided by the person-years lived during the interval
(assuming that the unit of time is a year). Let the person-years be denoted by PY.
The migration rate is � = �/PY . The person-years are assumed to be known and
independent of the number of migrations. Hence, PY is not a variate.

The Poisson variate describes the number of migrations during an interval. It
is applicable when event data are available (event-based approach). Migration is
often measured by comparing the places of residence at two consecutive points
in time. In that status-based approach, a migrant is an individual whose residence
at time t is different from the residence at t − 1. Multiple migrations during the
interval are not recorded and the number of migrants can never be larger than the
number of subjects in the (sample) population. If an individual whose residence at
time t differs from that at t−1 is coded 1 and an individual whose residence is the
same (although he may have changed residence several times during the interval)
is coded 0, then the number of migrants in a (sample) population is a binomial
variate. The probability of observing n migrants among a (sample) population of
m individuals is the binomial distribution with parameter p and index m:

Pr�Nm = n� = m!
n!�m − n�!p

n�1 − p�m−n� (6.4)

The parameter p is the probability of being a migrant. The logit model relates p
to predictors while assuring that the predicted value of p is between 0 and 1. The
logit model is

logit�p� = ln

(
p

1 − p

)
= �0 + �1Z1 + �2Z2 + · · · � (6.5)

where Zp can be any covariate and p/�1 − p�is the odds of being a migrant.
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In many applications, m is the total number of migrations out of a given region (of
origin) and n is the number of migrations that end in a given destination. In that case,
m−n is the number of outmigrations that end in another destination. The expected
number of migrations during an interval that end in a given destination rather than
in any of the other destinations is �p. The probability of observing n migrations
to the given destination during a unit interval is given by the Poisson distribution
with parameter �p with � = �PY . If the destination choice is independent of the
decision to outmigrate, then � (and �) and p can be studied separately (see e.g.
Hachen 1988). If the decision to outmigrate is not independent of the destination
� and p must be studied simultaneously.

If the possible number of destinations exceeds two, then the distribution of the
outmigrations over the destinations say three is given by the multinomial distribution

Pr�N1 = n1�N2 = n2� N3 = n3� = m!
n1!n2!n3!

p
n1
1 p

n2
2 p

n3
3 � (6.6)

which may be written in general as

Pr�N1 = n1�N2 = n2� ���� = m!∏I
i=1 ni!

∏I

i=1
pni

i � (6.7)

where I is the number of possible destinations, ni is the number of individuals
ending in i and with

∑
pi = 1and

∑
Ni =

∑
ni =m.

6.4 Probability models of migration
This section reviews models of state occupancies and state transitions. State occu-
pancy is expressed in terms of the probability that an individual selected at random
from a (sample) population occupies a given state. It is approximated by the propor-
tion of the (sample) population in a given state. State transitions during an interval
(in continuous time or discrete time) are expressed in terms of three risk indicators:
counts, probabilities (proportions) and rates. Probabilities relate transitions to the
risk set (population at risk) at the beginning of an interval. The risk set accounts
for attrition during the interval for reasons unrelated to the transition being studied
(censoring), which is the migration from the current place of residence to a given
destination. Rates relate transitions to exposure. Probabilities are obtained as the
ratio of the number of events (in continuous time or discrete time) to the risk set;
rates are obtained as the ratio of the number of events (in continuous time) to the
exposure time. Counts refer to the number of events that occur during a given
interval. It is the numerator in probability and rate measures.

In developing probability models of migration and migrants, the occurrence of an
event (migration) is assumed to be the result of an underlying random mechanism.
The occurrence of a migration depends on both personal attributes (systematic
factors) and chance. Our approach is to model the random mechanism by specifying
a probability model. A problem is that a migration is not necessarily associated with
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a single random mechanism. Different mechanisms may result in the same event of
migration. Hence different probability models may describe the level and direction
of migration. If an event is observed, it should be possible to identify the set of
plausible mechanisms and to identify the mechanism that most likely produced
the event. To determine the most likely mechanisms and the model that describes
that mechanism, the maximum likelihood method is applied. The method identifies
the ‘best model’, i.e. the model that has the greatest probability of predicting the
observations on event occurrence. That model describes the random mechanism
that most likely underlies the event.

6.4.1 State probabilities

Let S denote the state space: S = �1� 2� 3� 
 
 
 � i� 
 
 
 � I�. The state space contains
I possible geographical areas or regions. At a given age, an individual resides in
one area and one area only. In other words, the states are mutually exclusive. Let
Yk�x� be a polytomous random variable denoting the state occupied by individual
k at exact age x. The probability that an individual resides in state i is the state
probability. The probability that individual k resides in state i at exact age x
is k�i�x� = Pr�Yk�x� = i�. If all individuals are independent and identical, then

k�i�x�=�i�x� for all k. If individuals differ in a few characteristics only or if a few
characteristics suffice to predict the state occupied at age x, then k�i�x� =�i�x�Z�,
where Z represents a specific combination of characteristics or covariates. The
probability that individual k occupies state i at exact age x depends on the covariates
only, and individuals with the same covariates have the same state probability.

The state occupied at x may be denoted differently. Let Yki�x� be an indicator
variable (binary) which is 1 if individual k occupies state i at x and 0 otherwise.
The state probability is the probability that the random variable takes on the value
of 1.

Consider a sample of m individuals. We do not consider covariates, implying
that all individuals are identical. Covariates are introduced below. In addition, age
is omitted for convenience. The number of individuals observed in state i is

Ni =
m∑

k=1

Yki� (6.8)

The probability of observing N1 individuals in state 1, N2 in state 2, N3 in state 3,
etc., is given by the multinomial distribution

Pr�N1 = n1�N2 = n2� ���� = m!∏I
i=1 ni!

∏I

i=1
�

ni
i � (6.9)

where ni is the observed number of individuals in i and with
∑

�i = 1 and∑
Ni =

∑
ni =m. The most likely values of the parameters �i, given the data, are

obtained by maximising the likelihood that the model predicts the data, which is
the maximum likelihood method. The values of �i �i = 1� 2� 
 
 
 � I� that maximize
the above multinomial distribution is �̂i = ni/m.
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The expected number of individuals occupying state i is E	Ni
 = �im and the
variance is Var	Ni
 = �i�1 − �i�m. The probability that an individual is found in
state i is the expected value of Yi � �i = E	Yi]. The variance of Yi is

Var	Yi
 = Var	Ni/m
 = Var	Ni
/m2 = 	�i�1 − �i�
/m�

The variance declines with increasing sample size.
Now we introduce covariates. They are denoted by Z �Z = �Z1�Z2�Z3� 
 
 
 ��,

and Zp may represent a single attribute or a combination of attributes (to denote
interaction effects). The state probability �i�Z� that an individual with covariates
Z occupies state i is given by the logit equation

logit��i� = ln
(

�i

1 − �i

)
= �i = �i0 + �i1Z1 + �i2Z2 + �i3Z3 + · · · � (6.10)

where �i/�1 −�i� is the odds of occupying state i. The logit transformation assures
that the state probabilities lie between 0 and 1, and that their sum is equal to unity.
The value of � may range from −� to +�, but the value of �i stays within 0 and
1. To obtain the probabilities, the logit scale is converted into the probability scale

�i =
exp��i�

exp��1� + exp��2� + · · · + 1 + · · · = exp��i�∑I
j=1 exp��j�

� (6.11)

where the 1 is associated with the reference category. The model is the multinomial
logistic regression model.

6.4.2 Transition probabilities

The state occupied at a given age generally depends on the states occupied at
previous ages, in addition to personal attributes at the given age. Hence the proba-
bility of being in state j at x+1 (or more generally y� depends on the states occupied
at previous ages. It is often assumed that only the most recent state occupancy is
relevant:

Pr�Y�x + 1� = j �Y�x�� Y�x − 1�� · · · �Z� = Pr�Y�x + 1� = j �Y�x��Z�� (6.12)

If the state occupied at x is i, then

Pr�Y�x + 1� = j �Y�x� = i� = pij�x�� (6.13)

Here pij�x� is the probability that an individual who resides in state i at x resides
in state j at x+1. It is the discrete-time transition probability. The interval can be
of any length but is generally one or five years. This model is suited for describing
migrant data, i.e. data that infer migration by recording the places of residence at
two consecutive points in time.
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The status dependence may also be written as

logit	�j�x + 1�
 = �j0�x� + �j1�x�Yi�x�� (6.14)

where Yi = 1 if state i is occupied at x and 0 otherwise. Hence the transition
probability may be written as

pij�x� = exp	�j0�x� + �j1�x�Yi�x�
∑I
r=1 exp	�j0�x� + �j1�x�Yr�x�


� (6.15)

The transition probabilities may depend on covariates in a way that is similar to
that of state probabilities. Transition probabilities out of a given state i that depend
on covariates may be estimated using multinomial logistic regression software.

6.4.3 Transition rates

The transition probabilities discussed in Section 6.4.2 are defined for discrete time
intervals. They depend on the number of persons at risk at the beginning of the
interval, which is generally known as the risk set. The probabilities are not directly
related to the duration that individuals in i are at risk of migrating to j. Since the
event of migration (direct transition) may occur at any time during the interval
from x to y (with y = x+1, for instance), the transition probability is defined for
very small intervals. The probability that an individual in i transfers to j during an
infinitesimally small interval following x is the instantaneous rate of transition:

�ij�x� = lim
�y−x�→0

(
pij�x� y�

y − x

)
for i not equal to j� (6.16)

The instantaneous rate of transition is also known as the transition intensity and
the force of transition. The term �ii�x� is defined such that

∑
j �ij�x� = 0. The

quantity �ii�x� is nonnegative. It is sometimes referred to as the intensity of passage
because it relates to the transition from i to any other state different from i. Schoen
(1988:65) refers to it as the ‘force of retention’.

The intensities are the basic parameters of a continuous-time multistate process.
Under the restrictive Markov assumption, the probability that an individual leaves a
state depends only on the state occupied and the individual’s age. It is independent
of other characteristics.

The matrix of instantaneous rates with off-diagonal elements −�ij�x� and
with �ii�x� on the diagonal is known as the generator of the stochastic process
�Yk�x�� x � 0� (Çinlar 1975:256). The matrix is denoted by ��x�, and has the
following configuration:

��x� =

⎡
⎢⎢⎢⎣

�11�x� −�21�x� · · · −�I1�x�
−�12�x� �22�x� · · · −�I2�x�

���
���

� � �
���

−�1I �x� −�2I �x� · · · �
II�x�

⎤
⎥⎥⎥⎦ � (6.17)
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Note that

lim
�y−x�→0

(
P�x� y� − I

y − x

)
= −��x�� (6.18)

The matrix of discrete-time transition probabilities is:

P�x� y� =

⎡
⎢⎢⎢⎣

p11�x� y� p21�x� y� · · · p
N1�x� y�

p12�x� y� p22�x� y� · · · p
N2�x� y�

���
���

� � �
���

p1N �x� y� p2N �x� y� · · · p
NN �x� y�

⎤
⎥⎥⎥⎦ � (6.19)

An element of P�x� y�, namely pij�x� y�, denotes the probability that an individual
who is in state i at exact age x is in state j at exact age y. The Markovian assumption
implies the following relationship between P�x� x + v� and P�x + v� y�:

P�x� y� = P�x� x + v� · P�x + v� y�� (6.20)

Subtraction of P�x + v� y� from both sides of the equation yields

P�x� y� − P�x + v� y�

v
= 	P�x� x + v� − I
P�x + v� y�

v
(6.21)

and

lim
v→0

P�x� y� − P�x + v� y�

v
= lim

v→0

	P�x� x + v� − I
 P�x + v� y�

v
(6.22)

or

dP�x�

dx
= −��x�P�x�� (6.23)

Recall that

lim
�y−x�→0

P�x� y� − I
y − x

= −��x�� (6.24)

Multiplying both sides with the vector of state probabilities at age x� P�x�, leads to

dP�x�

dx
= −��x�P�x�� (6.25)

where P�x� is a vector of state probabilities.
The model is a system of differential equations. In multistate demography, two

avenues are followed to solve the system. Both introduce age intervals (Rogers and
Willekens 1986:370ff.). The first avenue postulates a piecewise constant intensity
function, ��t� = ��x� in the interval from x to y �x ≤ t < y�. This implies an
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exponential distribution of demographic events within each age interval. The model
that results is referred to as the exponential model. The second avenue postulates a
piecewise linear survival function. A piecewise linear survival function is obtained
when demographic events are uniformly distributed within the age intervals. The
model that results is referred to as the linear model. The first avenue is followed by
van Imhoff (1990) and van Imhoff and Keilman (1991) among others; the second by
Willekens and Drewe (1984) among others. The state occupancies and the sojourn
times must be estimated simultaneously from the population at the beginning of the
interval and the events during the interval.

To solve the system of differential equations, it may be replaced by a system of
integral equations:

P�x� y� = I −
∫ y−x

0
��x + t� P�x� x + t� dt� (6.26)

To derive an expression involving transition rates during the interval from x to y,
we write

P�x� y� = I −
[∫ y −x

0
��x + t� P�x� x + t� dt

] [∫ y−x

0
P�x� x + t� dt

]−1

×
[∫ y−x

0
P�x� x + t� dt

]
(6.27)

and

P�x� y� = I − M�x� y� L�x� y�� (6.28)

where M�x� y� is the matrix, with elements mij�x� y�, of average transition rates
during the interval from x to y and

L�x� y� =
∫ y−x

0
P�x� x + t� dt

is the sojourn time spent in the different states between ages x and y per person in
a state occupied at age x.

6.4.3.1 Exponential model

The transition intensities ��x� are assumed to remain constant during the age
interval from x to y and to be equal to the model transition rates M�x� y�. It is
furthermore assumed that they can be estimated by empirical occurrence–exposure
rates for that age interval. This assumption is consistent with the general assumption
in demography that life-table rates are equal to empirical rates. In this chapter
no separate notation is used for model rates and empirical rates. The matrix of
transition probabilities between x and y is

P�y� x� = exp 	−�y − x�M�y� x�
 � (6.29)
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where M�x� y� is the matrix of empirical occurrence–exposure rates or transition
rates for the age interval from x to y and �ij�t� = mij�x� y� for x ≤ t < y and
��t� = M�x� y� for x ≤ t < y.

A number of methods exist to determine the value of exp[−M] (see e.g. Director
and Rohrer 1972:431ff.; Aoki 1976:387; Strang 1980:206). For example, the Taylor
series expansion may be used for exp(A),

exp�A� = I + A + 1
2! A2 + 1

3! A3 +· · · � (6.30)

Hence one obtains

exp	−�y − x�M�x� y�
 =I − �y − x�M�x� y� + �y − x�2

2! 	M�x� y�
2

− �y − x�3

3! 	M�x� y�
3 +· · · (6.31)

(see also Schoen 1988:72).
The transition rates M�x� y� are estimated from the data. The transition rate

mij�x� y� is equal to the number of moves (or direct transitions) from i to j during
the interval from x to y, divided by the exposure in the state i:

mij�x� y� = nij�x� y�

Li�x� y�
� (6.32)

where nij�x� y� is the observed number of moves from i to j during the interval
and Li�x� y� is the duration in i exposed to the risk of moving to j. It is the sojourn
time in i during the (x� y� interval. Exposure is measured in person-months or
person-years. In the case of two states, the rate equation may be written as

[
m11�x� y� −m21�x� y�

−m12�x� y� m22�x� y�

]
=
[

n11�x� y� −n21�x� y�
−n12�x� y� n22�x� y�

]
=
[

L1 �x� y� 0
0 L2�x� y�

]−1

�

(6.33)

where m11�x� y� = m12�x� y� and m22�x� y� = m21�x� y�. In matrix notation:

M�x� y� = n�x� y� 	L�x� y�
−1 � (6.34)

Let L�x� y� be the vector of sojourn times containing the diagonal elements of
L�x� y� and let K�x� be a vector with the state occupancies at age x by surviving
cohort members as its elements:

K�x� =
[

K1�x�
K2�x�

]
� (6.35)
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with Ki�x� the number of cohort members in state i at exact age x. The vector
of sojourn times by all cohort members in the various states is obtained by the
following equation:

L�x� y� =
[∫ y−x

0
P�x� x + t� dt

]
K�x�� (6.36)

Since the transition intensities are constant in the interval from x to y, the equation
may be written as follows:

L�x� y� =
[∫ y−x

0
exp 	−t M�x� y�
 dt

]
K�x�� (6.37)

Integration yields

− 	M�x� y�
−1 �exp 	−t M�x� y�
 �y−x
0 � (6.38)

which is equal to

	M�x� y�
−1 �I − exp 	−�y − x� M�x� y�
 � � (6.39)

Hence the sojourn times in the various states during the (x� y� interval are given by

L�x� y� = 	M�x� y�
−1 �I − exp 	−�y − x� M�x� y�
 � K�x�� (6.40)

6.4.3.2 Linear model

To solve P�x� y� = I − M�x� y� L�x� y�, one may introduce an approximation
of L�x� y�. A simple approximation is that P�x� x + t� is linear in the interval
x ≤ x + t < y. Hence L�x� y� may be approximated by a linear integration:

L�x� y� =
∫ y−x

0
P�x� x + t� dt ≈ y − x

2
	I + P�x� y�
 � (6.41)

Introducing this expression in the equation to be solved gives

P�x� y� = I − y − x

2
M�x� y� 	I + P�x� y�
 � (6.42)

P�x� y� = I − y − x

2
M�x� y� I − y − x

2
M�x� y� P�x� y�� (6.43)

P�x� y� + y − x

2
M�x� y� P�x� y� = I − y − x

2
M�x� y� P�x� y� (6.44)
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P�x� y� =
[
I + y − x

2
M�x� y�

]−1 [
I − y − x

2
M�x� y�

]
� (6.45)

The linear approximation implies the assumption that the events are uniformly
distributed over the interval. The assumption is adequate when the transition rates
are small or the interval is short. It can be shown that the linear model is an
approximation to the exponential model that retains the first three terms of the
Taylor series expansion.

The instantaneous rates of transition �ij�x� may be written as the product of two
terms, a rate and a probability. The first is the instantaneous rate of leaving state of
origin i irrespective of destination, and the second is the conditional probability of
selecting j as the destination provided the state of origin is left (i.e. upon leaving
i). The first term, the exit rate, determines the timing of the transition, while the
second, the destination probability, determines the destination (new attribute). The
exit rate is

�i+�x� = �i�x� =∑
j �=i

�ij�x��

Note that �i�x� = �ii�x�. The transition rate is

�ij�x� = �i+�x� �ij�x��

where �ij�x� is the probability that an individual who leaves i selects j as the
destination. It is the conditional probability of a direct transition from i to j. Note
that the above expression is that of a competing risk model or a transition rate
model with multiple destinations (Blossfeld and Rohwer 2002). In the terminology
of competing risks, the first term is the rate of the event and the second term
(destination) indicates the type of the event. If the occurrence of the event and the
type of event are unrelated, the two terms may be estimated and studied separately
(Hachen 1988:29; Sen and Smith 1995:372). The first term is studied using a
transition rate (hazard rate) model; the second using a logit model or a logistic
regression model.

In the migration literature, the first term �i�x� is known as the generation compo-
nent and the second �ij�x� as the distribution component (Rogers et al. 2002b).
It is often assumed that the factors that influence the level of outmigration differ
from those that influence the choice of destination, and consequently the generation
and the distribution components are modelled separately. If, in addition, the choice
of destination is independent of the origin, the model that results is the migrant
pool model.

The discrete-time transition probabilities are related to the transition intensities
and the transition intensities are related to the probabilities of direct transition
in an interesting way. The off-diagonal elements of M(x� y� may be replaced by
−mi+�x� y��ij�x�, where mi+�x� y� is the rate of leaving i, which is assumed to be
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constant in the interval from x to y. The diagonal elements are mi+�x� y�. The �
matrix may be written as

⎡
⎢⎢⎢⎣

�11�x� −�21�x� · · · −�I1�x�
−�12�x� �22�x� · · · − �I2�x�

���
���

� � �
���

−�1I �x� − �2I �x� · · · �II�x�

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

�11�x� −�21�x� · · · −�I1�x�
−�12�x� �22�x� · · · −�I2�x�

���
���

���
���

−�1I �x� −�2I �x� · · · �II�x�

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

�1+�x� 0 · · · 0
0 �2+�x� · · · 0
���

���
� � �

���
0 0 · · · �I+�x�

⎤
⎥⎥⎥⎦ (6.46)

Now we introduce covariates. As above, they are denoted by Z�Z = �Z1�Z2�
Z3� 
 
 
 ��. The exit rate is modelled using a transition rate model for a single
event (leaving the state of origin). The elementary transition rate model is the basic
exponential model, with the rate being independent of age (Blossfeld and Rohwer
2002):

mi = exp ��i0 + �i1Z1 + �i2Z2 + · · ·� � (6.47)

The model may be written as a log-linear model

ln mi = �i0 + �i1Z1 + �i2Z2 + · · · (6.48)

The model is also known as the log-rate model (see e.g. Yamaguchi 1991:
Chapter 4).

The age dependence may be introduced in two ways: nonparametric and para-
metric. In the first approach, the population is stratified by age and a transition rate
is estimated for each age separately. In the parametric approach, age dependence is
represented by a model. A common model is the Gompertz model, which imposes
onto the transition rate an exponential change with duration. The Gompertz model
has two parameters and each may be made dependent on covariates – for detailed
treatment, see Blossfeld and Rohwer (2002). Other parametric models of duration
dependence may be used. In migration studies, the model migration schedule is a
common representation of the age dependence of the migration rate. Each parameter
of the model may be related to covariates. In practice, only one or a selection of
parameters is assumed to depend on covariates. The computer package for transi-
tion data analysis (TDA) developed by Rohwer and used by Blossfeld and Rohwer
(2002) has a facility for user-defined rate models (Rohwer and Pötter 1999: Section
6.17.5). The program may be downloaded from Professor G. Rohwer’s homepage
at http://www.stat.ruhr-uni-bochum.de/ . The manual can be downloaded from the
same site.
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In some cases, the researcher is not interested in the age dependence of migration
rates, but in the effect of covariates on the migration level. Rather than omitting
age altogether, as in the basic exponential model, the migration rate is allowed to
vary with age but the effect of the covariates on the migration rate does not vary
with age. The transition rate model that results is a Cox proportional hazard model.
It is written as

mi�x� = mi0�x� exp 	�i0 + �i1Z1 + �i2Z2 + · · ·
 � (6.49)

where mi0�x� is the baseline hazard. It is the set of age-specific migration rates for
the reference category. Note that if the age dependence (age structure) of migration
is independent of the dependence on covariates (motivational structure), the baseline
hazard may be represented by a parametric model and the two components may be
estimated separately.

This brief discussion illustrates that transition rate models are ideally suited to
impose age structures onto migration data. The same applies for spatial structures
and motivational structures. Spatial interaction models may be used for that purpose,
but also Poisson regression models (log-linear models) with offset. The migration
rates in the model presented in this section depend on origin, destination and age,
and they may vary over time. Several authors have found that spatial patterns of
migration are stable in time (Baydar 1983; Rogers and Raymer 2001; Berentsen and
Cromley 2005). It implies that the origin–destination interaction does not vary in
time. Higher-order interaction effects may be omitted if empirical evidence shows
that they are not significant. Van Imhoff et al. (1997) and van der Gaag et al.
(2000) used a series of empirical tests to determine which combinations of the
four dimensions of interregional migration (origin, destination, age and sex) were
needed to describe the migration patterns adequately. Many of the simplifications
that result from omitting higher-order interaction effects are studied in the context
of demographic projection models.

6.4.4 From transition probabilities to transition rates

In this section, we assume that migration is measured in discrete time. Examples
include the census (based on the residence at time of census and five years prior to
the census). From that information, the approximate transition rates can be derived.
The problem is equivalent to one in which we are given P(x� y� and M(x� y� is
required. The derivation starts with the exponential expression in Equation (6.29).
The exponential expression may be approximated by the linear model:

P�x� y� = [
I + 1

2 M�x� y�
]−1 [

I − 1
2 M�x� y�

]
� (6.50)

The approximation is adequate when the transition rates are small or the interval
is short.

The derivation of the rate of migration during an interval from information in
regions of residence at two consecutive points in time is known as the inverse
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problem: transition rates are derived from transition probabilities (Singer and
Spilerman 1979). The transition rates may be written as:

M�x� y� = y − x

2
	I − P�x� y�
 	I + P�x� y
−1 � (6.51)

This inverse relation may be used to infer transition probabilities for intervals that
are different from the measurement intervals. For instance, if changes of address
are recorded over a period of five years, the inverse relation may be used to infer
the average migration rates M(x,y� and the transition probabilities over a one-year
period. The expression is

P�x� x + 1� = exp 	−M�x� x + 1�
 � (6.52)

where M(x�x+1) is estimated from P(x� y� using the inverse method. The method
assumes that migration rates are constant during the (x� y� interval and that the
linearity is an adequate approximation of the exponential model.

6.5 Incomplete data
6.5.1 Adding statistical data

In the previous section, it is assumed that the data are adequate to estimate the
parameters of the probability models that are specified. The method applied is the
maximum likelihood method. In this section the assumption is relaxed. Some data
may be missing.

If data are missing, the strategy consists of two steps. The first is to predict the
missing data and the second step is to estimate the parameters of the model assuming
that the data are complete. This two-step procedure is the EM (expectation–
maximisation) algorithm (McLachlan and Krishnan 1997). Suppose that we are
interested in migration by origin and destination (Nij�, but the data are limited to
departures and arrivals by region (ni+ and n+j�. The model is

E
[
Nij

]= �ij = �i �j� (6.53)

In the first step, the expected value of Nij is determined assuming values for the
parameters (expectation). Assume �i = 1 and �j = 1. Hence E	Nij] = 1. In the second
step, the parameters of the model are estimated by maximising the probability that
the model predicts the data (maximisation). If the observations are independent, the
probability model is the Poisson model

Pr�Nij = nij� = �
nij

ij

nij!
exp�−�ij� with E

[
Nij

]= �ij = �i �j� (6.54)
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The maximisation of the probability is equivalent to maximising the log-likelihood:

l =∑
ij

[
nij ln��i�j� − �i�j

]
� (6.55)

The first-order conditions result in the following equations:

�̂i =
ni+∑

j �̂j

and �̂j = n+j∑
i �̂i

� (6.56)

The EM algorithm results in the well known expression,

�ij = ni+
n++

n+j�

which may be written as �ij = ni+pj , where ni+ is the number of migrations
originating in i and pj is the probability that a migration ends in j. The destination
probability applies to all migrations in the pool of migrations and is independent
of the origin.

The method just described imposes a spatial structure onto migration flows
(Willekens 1999). The spatial structure implies that destinations are independent of
regions of origin. Suppose we have reason to believe that origin matters, i.e. the
choice of destination is influenced by the origin. For instance, migrants are more
likely to settle in a region not too far from the region of origin. If distance matters,
the prediction of �ij may be improved by the addition of a distance factor to the
model:

E
[
Nij

]= �ij = �i �j �ij� (6.57)

where the distance factor �ij may be a function of the friction between i and j, i.e.
the higher the friction, the lower the value of �ij . An expression that satisfies the
relation between distance factor and spatial friction is �ij = exp

(−cij

)
� where cij is

a measure of friction between i and j. The model that results is the gravity model

E
[
Nij

]= �ij = kai �j exp
(−cij

)
� (6.58)

where �ij =kaij and k is a scaling factor. Note that the model is a log-linear model,

ln �ij = u + uA
i + uB

j + uAB
ij � (6.59)

where uA
i is the effect associated with origin (variable A) i, uB

j is the effect associated
with destination (variable B) j, and uAB

ij is the interaction effect between origin
and destination. The model is the conventional log-linear model (see e.g. Agresti
1996: Chapter 6). The gravity model and other spatial interaction models may
be represented as log-linear models (Willekens 1980, 1983; Rogers et al. 2003a).
Although the translation opens new perspectives and provides a thorough statistical
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basis for the modelling of spatial interaction, the log-linear specification of spatial
interaction models has not caught on – see e.g. the review of spatial interaction
modelling by Roy and Thill (2004).

Interaction effects between origin and destination may be derived from different
data sources. One source is a historical migration matrix. Snickars and Weibull
(1977), working on internal migration, found that migration tables of some period
in the past provide much better estimates of accessibility than any distance measure.
Since the publication of that article, authors started to use historical migration
matrices instead of distance measures to represent the spatial interaction. Later,
authors did not limit the a priori information to a single year in the past, but use
trends over several years (see e.g. Jörnsten et al. 1990). The historical migration
may be accurate measurements of the ‘revealed’ residential preferences. For a
prediction of migration flows involving historical migration matrices, see Rogers et
al. (2003a:64ff.). Table 6.1 shows one of the results. The prediction problem is to
determine the interregional migration flows in the United States during the period
1980–1985 from information on the number of residents in the different regions in
1985, the number of residents in 1980 by region, and the flows during the period
1975–1980. The model is

E
[
Nij

]= �ij = �∗
i �∗

j m0
ij� (6.60)

where m0
ij is an element of the 1975–1980 migration matrix and �ij is the predicted

number of (i� j� migrants during the period 1980–1985. The historical matrix
serves as an initial guess of migrations between origins and destinations. Note that
the model is equivalent to the biproportional adjustment method or RAS model
that is commonly used in input–output analysis.3 The 1975–1980 migrant flow,
the observed 1980–1985 flow and the predicted 1980–1985 flow are shown in
Table 6.1(a)–(c). The marginal totals of the predicted migration flows are consistent
with the data (1980–1985). The origin–destination interactions exhibited by the
predicted values are identical to the interactions exhibited by the 1975–1980 flows.
The interaction can be interpreted in terms of odds and odds ratios. The odds that,
in 1975–1980, a migrant from the Midwest selects the South rather than the West is
1845/1269 = 1.454. The odds for a migrant from the Northeast is 1800/753 = 2.390.
A migrant from the Northeast prefers the South over the West considerably more
than a migrant from the Midwest. The odds ratio is 2.390/1.454 = 1.644. The odds
of selecting the South rather than the West are 64 % higher for a migrant from the
Northeast than for a migrant from the Midwest. The migration flow that is predicted
for the period 1980–1985 exhibits the same odds ratio: [1614/632]/[1977/1272]
=1.644. Main effects and interaction effects that are not included in the contem-
porary data are ‘borrowed’ from the historical data (Willekens 1982). For detailed

3 In the input–output literature, the method has become known as RAS because of the notation used by Sir Richard
Stone (1961), who developed the method. The method projects a matrix A to give it column and row sums of another
matrix; the result is RAS, where R and S are diagonal matrices. For a history of method development, see Lahr (2004).
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Table 6.1 US interregional migration flows (in thousands): 1975–1980 and 1980–
1985.

Region Region of destination
of origin

Northeast Midwest South West Total

(a) 1975–1980 data
Northeast 43 123 462 1 800 753 46 138
Midwest 350 51 136 1 845 1 269 54 600
South 695 1 082 67 095 1 141 70 013
West 287 677 1 120 37 902 39 986
Total 44 455 53 357 71 860 41 065 210 737

(b) 1980–1985 data
Northeast 44 845 379 1 387 473 47 084
Midwest 326 52 311 1 954 1 144 55 735
South 651 855 68 742 1 024 71 272
West 237 669 1 085 40 028 42 019
Total 46 059 54 214 73 168 42 669 216 110

(c) 1980–1985 flows predicted based on marginal totals and 1975–1980 matrix
Northeast 44 445 393 1 614 632 47 084
Midwest 431 52 055 1 977 1 272 55 735
South 814 1 047 68 324 1 087 71 272
West 369 719 1 253 39 678 42 019
Total 46 059 54 214 73 168 42 669 216 110

(d) 1980–1985 flows predicted based on West survey and 1975–1980 matrix
Northeast 21 181 272 1 037 473 22 963
Midwest 247 43 135 1 526 1 144 46 052
South 488 909 55 235 1 024 57 656
West 237 669 1 085 40 028 42 019
Total 22 153 44 985 58 883 42 669 168 690

(e) 1980–1985 flows predicted based on West survey, 1975–1980 matrix
and judgemental data
Northeast 40 243 516 2 365 899 44 023
Midwest 296 51 762 2 197 1 373 55 628
South 488 909 66 282 1 024 68 703
West 237 669 1 302 40 028 42 236
Total 41 264 53 856 72 146 43 324 210 590

Source: Rogers et al. (2003a).
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discussions on how to impose spatial structures and age structures onto migration
flows, the reader is referred to Rogers et al. (2002a, 2003a).

6.5.2 Adding judgemental data

Combining data from several sources implies the use of prior information on
the association between the cross-classified variables. In Section 6.5.1, the prior
information is derived from other statistical data, such as a historical migration
matrix. The interaction effects that are not contained in the contemporary data are
‘borrowed’ from the more detailed, but outdated, source. The estimation algorithm
makes use of this prior information only when more reliable (recent) information
is lacking. The estimation problem may be given a Bayesian interpretation, making
the use of prior information more explicit (Albert and Gupta 1983; Congdon 2001).

The prior beliefs on the degrees of association between the variables are not
restricted to information contained in statistical data. The prior information may
also be derived from established theory or from expert judgements. Most experience
to date with the quantification and utilisation of expert knowledge is in the field of
risk analysis and artificial intelligence. The combination of statistical information
and judgemental knowledge is common practice in forecasting to improve forecasts.
Today it is generally accepted that judgemental and statistical methods each have
unique strengths that they can bring to the forecasting process (Armstrong and
Collopy 1998). Expert judgements are being used for the forecasting of internal
and international migration (for an early review, see Willekens 1994:28ff.). Harker
(1986) combined subjective judgements of experts in the migration field with
quantitative data such as physical distance and wage and employment rates to
make predictions of future migration patterns in the United States. His method of
combining judgemental and statistical data is based on Saaty’s analytic hierarchy
process (AHP). The AHP is a method by which subjective weights are assigned to a
set of objects or alternatives. Cook et al. (1984) use the AHP method in combination
with time series analysis to make predictions of intra-urban migration. The AHP
is used to correct the results of a statistically based forecast. George and Perreault
(1992:93–95) report that Canada uses a consensus approach based on opinions of
experts and/or administrators and that the Netherlands considers discussions with
experts on international migration. The uncertain opinions of experts are used often
because no other reliable data exist. Expert opinion can be a very useful source of
data. But, as Cooke stresses in his book Experts in uncertainty, proper use of this
source requires new techniques (Cooke 1991:3). Particularly, the estimation and
forecasting of international migration may benefit from new techniques developed
in the context of judgemental forecasting, since international migration depends
on many factors that are difficult to incorporate into a formal model (van de Kaa
1993:87–88):

The flow of migrants between countries is, normally, regulated by charters, covenants,
treaties and similar agreements between (groups of) states, and by such rules and practices
as individual countries choose to apply . . . Thus the way international migration is shaped
and is likely to develop, depends to a great extent on the nature of the relations between
the countries involved.
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What is relevant to forecasting, i.e. the estimation of missing information
pertaining to the future, may be relevant to the estimation of missing information
in general. Expert opinion may be viewed as data (Cooke 1991:80). It turns out
that the use of judgemental data in the modelling of migration is not at all a new
idea. Knudsen (1992) discusses the method of how to include a priori informa-
tion in the context of generalised linear models. He suggests including a priori
information into the model by treating this information as a covariate having a
known parameter value of unity. Note that this approach is similar to the method
discussed in Section 6.4.1. In order to understand and monitor migration flows,
expert knowledge on the causal structure of migration and on any other feature of
migration should be used in combination with statistical data. The question of how
to use expert knowledge properly remains largely open.

Rogers et al. (2003a) use judgemental data in combination with historical statis-
tical data to predict migration flows between the four regions of the United States
(Northeast, Midwest, South and West). The estimates in Table 6.1 were obtained
assuming that the arrivals and departures are given for the period 1980–1985 and
that, in addition, the full migration matrix for the period 1975–1980 is given. Now
we assume that the information at hand is restricted to the historical migration
matrix (1975–1980) and a migration survey carried out in the West. The survey
gives the arrivals in the West during the period 1980–1985 by region of origin,
and the departure from the West during the same period by region of destination.
The data are shown in the fourth row and fourth column of the 1980–1985 migra-
tion flows in Table 6.1. The 1980–1985 migration flows are predicted using the
survey data and the historical matrix of 1975–1980. Table 6.1(d) shows the results.
The migrations from the West and to the West are equal to the input data. The
other migration flows are obtained assuming the interaction patterns observed in
the 1975–1980 period.

Suppose that experts indicate that the attractiveness of the West diminished in
the early 1980s and that the South became more attractive. In addition, assume
that other studies showed an increased propensity to leave the Northeast and the
Midwest. That information can be incorporated into the parameter values of the
log-linear model – that is, into the odds. Suppose the odds that a migrant selects the
South rather than the West is 20 % higher than revealed by the migration pattern
to the West between 1980 and 1985, and suppose that the odds that a migrant into
the West originated in the Northeast (rather than in the West) is 9 % higher, and
that in the Midwest it is 20 % higher than revealed by the patterns of arrival in
the West. The parameters of the log-linear model with offset would then change
accordingly. Table 6.1(e) shows the predictions. The predictions are considerably
improved, except for the migration from the Northeast to the West, which is highly
overpredicted.

6.6 Conclusion
This chapter presents a unified perspective on the modelling of migration. The level
and direction of migration may be represented by different data types. Three types
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are distinguished: counts, rates and probabilities. The different representations of
migration may be reduced to one of these types or a combination. Different types
of migration data may be modelled using techniques that have been developed for
the analysis of life history data. The core consists of a (multistate) transition model
in discrete time and continuous time. Transitions recorded in continuous time are
direct transitions or events (migrations). The migration model is a transition rate
model. Transitions recorded in discrete time refer to migrants who are identified by
comparing the place of residence of a person at two consecutive points in time. The
appropriate model is a transition probability model, which is a multinomial logistic
regression model.

A major conclusion of the chapter is that models that have been developed to
study life histories are perfectly suited for the study of migration. They allow the
analysis of data of different types and the conversion of one data type into another.
They also allow the treatment of incomplete data. Initially migration models were
spatial interaction models. Today, they are increasingly considered as applications
of multistate event history models.
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