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Chapter 15

Continuous-time Microsimulation  
in Longitudinal Analysis

Frans Willekens

1	 Introduction

In longitudinal analysis, individuals are followed in time and are observed 
either continuously or at points in time. The time to event, the sequence 
of events and the factors that influence timing and sequence constitute the 
object of study. Time is a continuous variable (exact time) or discrete variable 
(time interval). Longitudinal data are used to estimate parameters of event 
history or life history models. Individual life histories can be represented 
by sequences of states and sequences of events, that are transitions between 
states, and described by multistate transition models. The parameters of these 
models are transition intensities when time is represented by a continuous 
variable and transition probabilities when time is discrete (for details, see 
Willekens, 2001). Microsimulation contributes to longitudinal data analy-
sis in a number of ways (Wolf, 1986, 2001). First, it generates individual 
event histories that are fully consistent with a set of transition intensities 
(probabilities). Second, it produces estimates of the full distribution of an 
outcome, in addition to the expected value that is produced analytically 
by most models. Third, it is helpful in examining the potential seriousness 
of defective data. Fourth, it may play a role in the imputation of missing 
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data. These contributions are enhanced when microsimulation is viewed as 
a form of sampling of a virtual population, an approach advocated by e.g. 
Wolf (2001) and adopted in this chapter. 

Microsimulation in continuous time resolves three important prob-
lems of discrete-time microsimulation. The first is how to determine the 
sequence of events (transitions) rather than the state occupancies at succes-
sive points in time. The second is the precise measurement of the lengths 
of episodes between events. In discrete-time microsimulation the duration 
between events can be determined only approximately, whereas it can be 
determined precisely in continuous-time microsimulation. The third is how 
to handle multiple transitions during a same interval. In discrete-time mi-
crosimulation, multiple transitions during an interval are either omitted or 
assumptions about the ordering and the timing of the events are imposed 
exogenously.���������������������������������������������������������� In continuous-time microsimulation, the theory of compet-
ing risks determines the timing and sequence. That allows a more accurate 
study of temporal sequence of events than in discrete time analyses. In ad-
dition the theory allows to model complex event sequences and interactions 
between events. The fact that microsimulation models in discrete time are 
not able to handle complex and interdependent event sequences is viewed 
as an important limitation (Zaidi and Rake, 2001: 19). The fourth problem 
that continuous-time microsimulation resolves is related to the third. It is 
the estimation of the number of events during an interval. In addition to 
resolving these problems, continuous-time microsimulation paves the way 
to an integrative framework that combines the analysis of life history data 
and the synthesis of life histories. That framework is rooted in probability 
theory and statistical theory and is extensively documented in the litera-
ture on survival analysis and event history analysis (see e.g. Blossfeld and 
Rohwer, 2002; Klein and Moeschberger, 2003; Andersen and Keiding, 2002; 
Putter et al., 2007; Meira-Machado et al., 2009). By adopting the established 
framework, microsimulation is embedded in event history analysis, which 
is an aim worth pursuing (see also Wolf, 1986 and Galler, 1997). 

In event history models (also known as duration models, survival 
models and transition models) the variables of interest are the (waiting) 
time to event and sequences of events and states occupied. The time to 
event is a random variable. The distribution of the values of the random 
variable is described by the distribution function, the survival function, the 
probability density function and the hazard function. The inverse distribu-
tion function or quantile function is of prime importance in continuous-time 
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microsimulation. The quantile function translates a probability into a real 
number, whereas the more commonly used distribution function and sur-
vival function translate a real number into a probability. The real number 
is the (waiting) time to event. 

The chapter is organized as follows. Section 2 describes the method 
for generating waiting times to events from duration models. The approach 
is to use the inverse distribution function of the duration model. Once the 
function is specified, the generation of waiting times is straightforward. 
Section 3 presents numerical illustrations. Three illustrations are considered. 
The first is a simple one: a single event during a period of a given dura-
tion. The second illustration is a full multistate transition model with three 
states: healthy, disabled and dead. The multistate model is a continuous-time 
Markov model. That model, combined with a random generation of waiting 
times to transition, produces lifepaths for members of a virtual population. 
In this illustration the virtual population is homogeneous. The third illustra-
tion considers a heterogeneous population. Individuals are characterized 
by covariates. Some members of the virtual population participate in an 
intervention programme that includes prevention and treatment. The il-
lustration expresses the nature and level of intervention in terms of the 
transition rates and assesses the impact of the prevention and treatment 
programmes on the probability of disability, the time at onset of disability 
and the numbers of years with disability. Section 4 concludes the chapter. 
Continuous-time microsimulation is implemented in a number of simula-
tion models. They are listed in Annex A. 

2	 Inverse distribution or quantile function

The quantile function translates a probability into a real number. In the 
context of dynamic microsimulation it translates a probability of a transition 
into a (waiting) time to transition. This section presents the general method 
and applications to a few well-known transition models. Let U denote a 
random variable following a uniform distribution on the interval from 0 
to 1: U ~U[0,1]. Let T be a random variable measuring the time to an event 
or transition, where transition refers to a direct transition from an origin 
state to a destination state. The distribution of T is F(t) with F(t) the prob-
ability that T is less than or equal to t, i.e. the probability that the transition 
occurs in the interval from 0 to t. The survival function is S(t) = 1 – F(t). At  
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time t, i.e. during the interval from t to t+dt, the transition occurs at a rate  
 

		          
. The rate is the hazard rate or transition rate. Hence  

 

					             
where H(t) is the cumulative hazard function.

The distribution function maps a real number (a particular value t of 
the random variable T) into a probability. The real number that is mapped 
into a probability is the quantile of the random variable (see Evans et al., 
2000: 5). Hence, t is the quantile of T. With t is associated a probability, 
α say, and the distribution function gives the probability that T does not 
exceed t. The inverse distribution function or quantile function maps a prob-
ability (α) into a real number (t). In other words it maps a realization of U 
(denoted by α) into a realization of T (denoted by t). The inverse distribu-
tion function of T, denoted by F-1(t) and G(α), is the value of t (quantile) 
such that the probability that T takes on a value less than or equal to t,  
is α: 					         . G(α) gives the value t for 
which F(t) = α. The quantile G(α) is the 100α percentile. The inverse sur-
vival function Z(α) is the quantile that is exceeded with probability α: 
			              . Inverse distribution functions are widely 
used in statistics, for instance to determine confidence intervals. Note that 
Z(α) = G(1-α). 

The inverse distribution function is used to generate random numbers 
from the distribution of a random variable. If G(T) is the inverse distribution 
function of T, then U = G(T) follows a uniform distribution on the interval 
from 0 to 1. In a Monte Carlo microsimulation a random draw from a distri-
bution function involves two steps. First, a random value for the probability 
α is drawn from the uniform distribution U[0,1] (note that G(T) follows the 
distribution U[0,1]). Second, using the inverse distribution function G(α), 
the probability is mapped into a real number t, which indicates the timing of 
the transition. The first step is independent of the transition model used. 

Common waiting time distributions include the exponential, the 
Weibull and the Gompertz distribution. If the waiting time to transition 
(T) follows an exponential distribution the transition occurs at a constant 
rate, i.e. the transition rate is constant. If the waiting time distribution is 
Gompertz, the transition rate changes exponentially with duration. If it is 
Weibull, the transition rate varies with duration following a power function 
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of duration. The exponential distribution is used in most continuous-time 
dynamic microsimulation models, e.g. DYNAMOD, SOCSIM, LifePaths 
and PENSIM. In this section I consider the quantile function of three widely 
used transition rate models: the exponential model, the Gompertz model 
and the Cox model.

The exponential distribution is thoroughly documented by 
Balakrishnan and Basu (1996) and Evans et al. (2000). If T is exponentially 
distributed, the transition rate is constant. Let µ denote the constant tran-
sition rate. The survival function is [ ]ttS µ−= exp)(  and the distribution 
function is [ ]ttF µ−−= exp1)( . The inverse distribution function of T is 
 

			        . 
For a given transition rate (and the exponential model) it translates a transi-
tion probability into a waiting time to transition. With a draw α from a the 
uniform distribution U[0,1] is associated a time to event t = G(α). 

In this section on theory, two distributions are considered that are 
not applied in this chapter: the Gompertz distribution and the Cox model. 
The Gompertz distribution of waiting times has two parameters, a scale 
parameter (µ) and a shape parameter (ν). The transition rate changes ex-
ponentially; ( )ttr νµ exp)( =  (with µ ≥ 0). If ν = 0, the Gompertz distri-
bution reduces to the exponential distribution. The survival function is  

( )



 −= )exp(1exp)( ttS ν
ν
µ  and the distribution function is 1 – S(t). 

The quantile function is

where U~U[0,1] is a random variable the values of which are uniformly 
distributed in the range from 0 to 1. A random draw from a Gompertz dis-
tribution is obtained in two steps, described above. First, a random number 
α is drawn from a uniform distribution over [0,1]. Second, the value of t 
is derived from the quantile function. Mueller et al. (1995: 558) generate a 
sample of waiting times from a Gompertz distribution. 

The Cox proportional hazard model is given by 

� 

µ(tZ) =µ0(t)exp ! 'Z[ ] 

where t is the time (duration), Z a vector of covariates, β the vector of regres-
sion coefficients and µ0(t) the baseline hazard function, which is the hazard 
function for the group of individuals with characteristics equal to the refer-
ence categories of the elements of Z. For details on the Cox model, see any 
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textbook on survival analysis or event history analysis. The survival func-
tion of the Cox proportional hazard model is 

� 

S(tZ) = exp !H0(t)exp(" 'Z)[ ]  

where H0(t) is the cumulative hazard function. The distribution function is
)(1 ZtS− . The quantile function of the Cox proportional hazard model is 

(Bender et al., 2005) 

� 

F
!1(tZ) =G("Z) =H0

!1 !ln(")exp(!# 'Z)[ ]  . The quan-
tile function determines the waiting time to a transition that is consistent 
with a probability of the transition when the probability depends on a con-
stant transition rate and a set of time-independent covariates. The quantile 
function translates the transition rate (hazard rate) into a waiting time to 
transition. The translation involves the two steps listed above. The first step 
translates the transition rate into a realization of a random variable that 
follows a uniform distribution and the second step translates that realiza-
tion into a realization of a waiting time distribution following a specific 
Cox model. For a discussion and application see Bender et al. (2005). A 
problem is that the Cox model is a semi-parametric model which leaves 
the baseline hazard unspecified. As a consequence, the cumulative hazard 
function H0 is unknown and the inverse cannot be obtained. To obtain 
waiting times from the transition rates, the baseline hazard function must 
be specified. If the baseline hazard function is constant, the waiting times 
generated are exponentially distributed. Bender et al. refer to this model as 
the Cox-exponential model. They also discuss the Cox-Gompertz and the 
Cox-Weibull models. If the baseline hazard function is a Gompertz distribu-
tion, the transition rate varies exponentially with duration with a level that 
depends on the covariates. 

In longitudinal microsimulation, the entire life course of an individual 
may be simulated before the simulation of the next individual starts. Wait-
ing times are generated for several competing events and the next event 
and the time to that event are determined by the smallest waiting time. 
An alternative is to simulate a segment of life for all individuals before the 
simulation of the next segment starts. A segment can vary in length from a 
month to several years. An advantage of this approach is that at the begin-
ning of each segment characteristics of other individuals and the context 
can be considered in determining transition rates. Segments may refer to 
windows of observation, periods during which for a given transition rate 
the duration dependence does not change (e.g. piecewise constant transition 
rates), and to time periods that are dictated by the application. For instance, 
demographic projections generally consider periods of one year. Consider 
duration intervals of length h years. If the waiting time t drawn at random 
from a waiting time distribution is less than h, the transition occurs during 
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the observation window at time t. If t exceeds h, the transition does not 
occur. In case of a repeatable event, multiple transitions may occur during 
a period of h years. Many life events may occur more than once, i.e. job 
change, childbirth, marriage, and migration. Suppose an event is repeatable 
and its first occurrence is at t1 (t1 <h). The event occurs a second time during 
the interval if a second draw of a random variable from U[0,1] results in a 
value of t2 that is less than or equal to h – t1. In that case, the second event 
occurs at time t1+t2. 

The assumption of fixed transition rates is for presentation only. Hazard 
rates are generally assumed to be piecewise constant, i.e. constant during 
intervals of a given length, usually one or five years. In that case, the expo-
nential distribution is a step function with parameters that differ between 
intervals. For a particular interval, the random draws from the particular 
exponential distribution are kept only if the event time is in the interval.

If the event is a repeatable event, it may occur more than once dur-
ing an interval of length h. Let t1 denote the time at first occurrence. The 
probability that the event occurs a second time during the interval is the 
probability that it occurs during the interval from t1 to h, which is of length 
h – t1. That probability is 





−−=− ∫

h

t
dthF

1

)(exp1)( 1 ττµ . 

A random number α is drawn from the uniform distribution U[0,1] and the 
value of t2 is determined that is consistent with that random number α. If 
t2 < h – t1, the event occurs a second time during the interval h, otherwise 
it does not. The sequence of events during the interval can be simulated in 
a similar way. 

If t is less than the time till the end of the interval, the event occurs at 
t. Otherwise the event does not occur.

3	 Illustration

Recall that a transition is an event that can be characterized by the time 
at occurrence, the origin state and the destination state. The origin state is 
denoted by i, the destination state by j and the waiting time to transition 
by the random variable Tij. Let time be measured in years and fractions 
of a year. The rate of transition is µij. Assume that the transitions occur in 
continuous time. Observations on times to transitions are manifestations 
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of Tij and the observed times to transitions are the basis for the statistical 
estimation of the transition rates. A discussion of the estimation is beyond 
the scope of this chapter. For methods, see e.g. Blossfeld and Rohwer (2002). 
The time to event T is generally analysed in terms of its distribution function 
F(t) and the associated survival function S(t), density function f(t), hazard 
function µ(t), quantile function G(α), and expected values of key indicators 
such as the expected waiting time to a transition E[T]. Note that the named 
distributions are equivalent and can be transformed one into another. The 
transition rates estimated from the data may be used to generate life histories 
that are consistent with the transition rates, using the quantile function. This 
is equivalent to sampling a virtual population with life histories governed 
by the empirical transition rates. Expected values serve as benchmarks to 
assess the results of the microsimulation. For large sample sizes the sample 
values should coincide with the expected values. This section consists of 
three subsections. Section 3.1 presents a transition with a single origin and 
a single destination. Multiple origins and multiple destinations are consid-
ered in Section 3.2. The aim is to determine the sequence and dates (times) 
of transition during the interval from 0 to h and to derive subsequently the 
length of episodes between transitions. The waiting time distributions are 
truncated at h. Conditional measures such as the expected waiting time to 
the event, provided the event occurs before h, are based on the truncated 
distribution. Section 3.3 introduces covariates and applies a transition model 
and continuous-time microsimulation to assess the effects of an intervention 
programme on the life histories of members of the virtual population. 

3.1	 Single origin and single destination

 A simple model of T is the basic exponential transition rate model (see e.g. 
Blossfeld and Rohwer, 2002, Chapter 4). The exponential distribution has a 
single parameter that is independent of time or duration. For presentation, 
I assume a transition rate of µ = 0.2. 

The probability of a transition within a period of time is given by the 
distribution function. The probability of a transition within a year is F(1) = 
1-exp(-0.2) = 0.18, i.e. 18%. The expected waiting time to a transition is E[T] 
= 1/0.2 = 5 years. It is 
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The median waiting time to the transition, i.e. the time at which there 
is a 50% chance that the event occurred, is given by the inverse distribu- 
 
tion function:  					     years. The probability  
 
of a transition reaches 25% at the upper quartile [G(0.25)] which is 1.44 years; 
the probability of a transition reaches 75% at the lower quartile [G(0.75)] 
which is 6.9 years. If the transition rate is 0.2, there is a 90% probability that 
the transition occurs before 11.5 years. Note that the probability that the 
transition occurs before the expected waiting time is 63.2%. The probability 
that no transition occurs between the start of the interval and τ (0 ≤ τ ≤ h) 
is the survival function S(τ) = exp[-0.2 τ]. 

The expected waiting time to transition during a period of h years is 
the total time expected to be spent in the origin state during h years. It is

 [ ] ( ) ( ) ( ) ( )[ ]12.0exp
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It is 0.91 if h = 1. The value is relatively high because the probability 
of experiencing the event during a year is relatively low and the waiting 
time is one year for persons who do not experience the event during the 
period of one year. 

The expected time spent in the origin state during a period of h 
years is a weighted average of the expected sojourn time in the pres-
ence of a transition and the sojourn time in the absence of a transition: 

[ ] [ ][ ])1(1)1(* STEShTE e −+=  where Ee[T] is the expected waiting time to 
the transition provided the transition occurs during the interval. The sojourn 
time in the absence of the transition is h years. The expected sojourn time 
provided the transition occurs is

 [ ] [ ]
)1(1

)1(
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−=  years. If h = 1, Ee[T] = 0.48. Under the exponential  
 
model, the transitions are concentrated in the first half of the year. If a tran-
sition occurs during a year, the probability that it occurs in the first half of 
the year is 

						                , which is 52%.
If the transition is repeatable, it may occur more than once during a 

period of h years. Suppose the rate is fixed at 0.2. The probability of at least 
two occurrences within a year is 1.75% and the probability of at least three 
occurrences is 0.11%. The probability of no occurrence during a period of 

[ ]
5.3

2.0

)2ln(

2.0

5.01ln
)5.0( ==

!
!=G  

� 

F(0.5) F(1) = 1! exp(! 1
2
0.1)[ ] 1! exp(!0.1)[ ] = 0.52  



 
Frans Willekens

362

one year is the survival function exp(-μ) = exp(-0.2) = 0.82 or 82%. The prob-
ability of precisely one occurrence is 16.37% and the probability of exactly 
two occurrences is 1.64%. The probability of precisely n(t) occurrences during 
the period from 0 to t is given by the Poisson distribution:

 { }
)!(

]exp[)(
)()(Pr

)(

tn

tt
tntN

tn µµ !
==  

 
where n(t)! is factorial n(t) which is the product 1 * 2 * 3 … * n(t).

The time intervals between occurrences are independent and expo-
nentially distributed. Let Dn denote the duration between the n-1st and 
the n-th occurrence. The expected length of the interval between any two 
occurrences is 1/μ (provided the length of “observation” is not constrained 
to a period of a given length). The time to the occurrence of rank n, Tn, is 
the sum of independent exponentially distributed variables Dn and is a 
gamma-distributed random variable. Hence the time to the n-th occurrence 
is the gamma distribution with parameters μ and n. 

Consider a random sample of 1,000 subjects from the virtual popula-
tion that experiences a single, non-repeatable transition at a constant rate of 
0.2 per year. The (waiting) time to transition is drawn from an exponential 
distribution with parameters μ = 0.2, using the method described above. 
Figure 1 shows the true survival and hazard distributions and the ‘empiri-
cal’ distributions based on the sample of the virtual population.

Figure 1:	 The exponential model (µ = 0.2)
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The “empirical” survival distribution (Surv_emp) based on simulated 
waiting time data is close to the true distribution as expected. For each dura-
tion the transition rate is calculated by dividing the number of transitions in 
the virtual population of 1,000 by the number of survivors in the mid-period. 
These duration-specific transition rates vary erratically around the true value 
of 0.2, especially at higher durations, which are drawn less frequently than 
lower durations. The mean transition rate is 0.204 (Haz_estim). It is estimated 
from the simulated waiting time data using the basic exponential transition 
rate model described by Blossfeld and Rohwer (2002, Chapter 4).

Suppose the transition is repeatable and we want to determine for 
each subject the number of occurrences during a period of one year (h=1). 
Each subject in the virtual sample is followed (observed) for a period of one 
year and transitions are recorded. For each transition that occurs, the time 
to transition and the rank of the transition are recorded. Statistical measures 
are calculated from the sample and the sample values are compared to ex-
pected values that are based on the theoretical distribution. Table 1 shows 
the results for three samples of size 1,000. The expected values are derived 
from the exponential distribution and the Poisson distribution, whatever 
distribution applies. In the first sample, 829 subjects do not experience a 
transition during the year and 171 experience at least one transition. Most 
of the subjects who experience at least one transition experience a single 
transition (152), 18 experience 2 transitions and 1 experiences 3 transitions. 
The total number of transitions experienced by the 1,000 subjects during 
that one year is 191 (152 + 18*2 + 1*3). In the second random sample, 203 
subjects experience at least one transition. Of them, 189 experience a single 
transition, 12 experience 2 transitions and 2 have 3 occurrences during the 
year. The total number of transitions in that year is 219. The expected distribu-
tion of the subjects by number of transitions is given in the last column. The 
expected distribution of number of transitions is derived from the Poisson 
distribution. The number of transitions that the 1,000 subjects may expect 
to experience during the interval of one year, given the transition rate of 
0.2, is 200 (=1,000 * 0.2). 

The expected time to the first occurrence during the year, provided the 
transition occurs, is 0.48 years (see above). The expected times to subsequent 
occurrences are more difficult to obtain analytically. The sample mean of the 
waiting times to the transition follows directly from the microsimulation 
(sampling). In Table 1 the values are shown for three samples. Note that in 
Sample 3, the time to the third occurrence is less than the time to the second 
occurrence. The reason is that the two subjects that experience three occur-
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rences during the year experience the first and the second occurrence earlier 
than the other subjects. Note also that the difference between the times at 
two consecutive occurrences does not yield the interval between transitions. 
To determine the interval, the times to transitions must be conditioned 
on a next transition. For instance, the time between the first and second 
transition should be calculated including only subjects that experience a 
second transition during the interval. These subjects may experience the 
first transition at different times (usually earlier) than subjects that do not 
experience a second transition. To illustrate the relation between the times 
to transitions and the number of transitions, consider Sample 1. The mean 
waiting time to the first transition is 0.50. The 18 subjects that experience 
two transitions during the year experience the first transition at 0.45 years, 
which is earlier than the overall average of 0.50 years. The 15 subjects with 
a single transition during the year experience the transition at 0.51 years, 
on average. The subject with three occurrences during the year experiences 
the occurrences at 0.51 years, 0.60 years and 0.96 years. The observation that 
subjects with more transitions during a given period experience the first 
transition earlier than other subjects is a general one. 

Table 1:	 Number of occurrences and times to transition. Random samples  
	 of 1,000 transitions and expected values

Number of subjects 
by number of occur-
rences within a year

Random 
sample 1

Random 
sample 2

Random 
sample 3

Expected 
values

0  829  797  828  819
1  152  189  153  164
2  18  12  17  16
3  1  2  2  1
4  0  0  0  0
5  0  0  0  0
Total  1000  1000  1000  1000
Total number of  
occurrences 
within a year

 191  219  193  200

Time to transition
1 0.504 0.478 0.483 0.483
2 0.672 0.705 0.700
3 0.960 0.740 0.596
4 - - -
5 - - -
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3.2	 Multiple origins and multiple destinations

If an origin state may have several exits or if a transition may result in one 
of multiple destinations, each exit or destination may be viewed as compet-
ing to be the exit or destination. In other words, the exits or destinations 
represent competing risks. In the presence of multiple destinations, the 
destination must be determined in addition to the time to transition. The 
time to event (transition) is an exponential random variable. It follows an 
exponential distribution with parameter the total exit rate, which is the 
sum of destination-specific transition rates (see further). The number of 
persons selecting a particular destination in a set of possible destinations is 
a multinomial random variable (or binomial in case of 2 competing risks). 
The competing risk model is generally formulated in terms of latent times 
to transition (see e.g. Klein and Moeschberger, 2003: 50ff.).1 Let Tj, j = 1, 2, 
…, J be a random variable denoting the unobservable time to occurrence of 
the transition to destination j, where J is the total number of destinations. 
Tj is a latent variable. In the theory of competing risks, observations on 
transitions consist of (1) the shortest time to transition, i.e. t = min (t1, t2, 
…., tJ) and (2) the destination. The destination is represented by the random 
variable S. If a transition to state j has taken place at tj, then tj is a realization 
of T and the destination is j (S = j). The basic competing risk parameter is 
the hazard rate for risk j 

 
which states that, in the presence of multiple destinations, the hazard rate 
is the product of the rate of transition in the small interval ∆t and the prob-
ability that the destination is j, provided that the transition has not occurred 
before t. The total hazard rate is 

 )()(
1

tt
J

j j∑ =
= µµ

The destination-specific hazard rate at time t may be written as the 
product of the total hazard rate μ(t) and a probability pj(t) that the destina-
tion state after the transition is j, provided the transition occurs at time t:

)()()( tptt jj µµ =

In continuous-time microsimulation, two approaches may be distin-
guished to determine the time to transition and the destination. They are 
equivalent, however. The first, used in e.g. LifePaths, uses )(t

ij
µ  , i.e. the 

1       The approach is also used in the presentations of the LifePaths microsimulation model.
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destination-specific hazard rates, and generates waiting times to transition 
for every possible destination j. The shortest waiting time is selected to 
determine the actual time to event and the destination. In case an interval 
of length h is considered, the transition occurs if tj is in the interval. The 
second approach uses two random variables: )(tµ  to determine the time to 
transition and )(tpij to determine the destination. The first random variable 
(time to event) is drawn from an exponential distribution to determine the 
timing of the transition. The destination is determined by a random draw 
from a uniform distribution U~U[0,1]. Let the draw be denoted by u. If u 
is less than p1(t), the transition is to the first destination, if p1(t) ≤ u < p1(t) 
+ p2(t), the transition is to the second destination, if p1(t) + p2(t) ≤ u < p1(t) 
+ p2(t) + p3(t), the transition is to the third destination, etc. 

The competing risk model may easily be extended to a multistate model 
with hazard rates depending on state of origin and state of destination. The 
transition rate μij(t) is the rate at which individuals, who occupy state i at 
time t, make a transition to state j. If the sample population is stratified by 
state occupied, the transition rates are conditioned on the state of origin, 
and the multistate model resembles the competing risk model. The transi-
tion rate by origin and destination μij(t) may be written as the product of 
the rate of leaving state i [μi+(t)] and destination probability conditional on 
the state of origin [p12(t)] and conditional on leaving. For instance, the rate 
of a direct transition from state 1 to state 2 may be written as: μ12 = μ1+ * 
p12, where μ1+ is the exit rate from 1 and p12 is the probability that a subject 
leaving 1 transits to destination 2.

By way of example suppose the state space consists of three states: 
healthy (1), disabled (2) and dead (3). At the start of the process being simu-
lated, all subjects are in state 1. The process is simulated for a period of 10 
years. Suppose the transition rates are constant and equal to: μ12 = 0.12, μ13 
= 0.03, μ21 = 0.06 and μ23 = 0.06. The rate of leaving state 1 (μ1+) is 0.15 and 
the rate of leaving state 2 (μ2+) is 0.12. The transition rates imply that 80% 
of the subjects leaving state 1 (healthy) move to state 2 (disability) and 20% 
move to state 3 (dead). Consider a sample of 1,000 subjects in state 1 at the 
start of the process. The expected state occupancies at different years are 
shown in Table 2. They are calculated by the following equation:

)(]exp[)()1( ttt KMKPK −==+

where K(t) is a vector of state occupancies indicating the number of subjects 
in each of the three states at time t. P is the matrix of transition probabili-
ties. In this illustration, they are estimated from the transition rates using 



 
Continuous-time Microsimulation in Longitudinal Analysis

367

the linear approximation of the exponential model (for the derivation, see 
Willekens, 2006): ][][]exp[ 2

11
2
1 MIMM −+Ι≈− −

The transition rates are assembled in the transition matrix M:
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The expected state occupancies at the beginning of each year from 0 
to 10 are given in Table 2.

Table 2:	 State occupancies, expected values

Year Healthy Disabled Dead
0 1000 0 0
1 863 105 31
2 751 185 64
3 658 244 98
4 581 286 133
5 517 316 167
6 463 336 201
7 417 348 235
8 379 353 268
9 346 354 300
10 317 352 331

To determine the sample values of the state occupancies at different dura-
tions, consider again a sample of 1,000 subjects in state 1 at the beginning 
of the process. Assume that the subjects do not differ with respect to the 
transitions between healthy, disabled and dead. All healthy people experi-
ence the same incidence rate of disability and the same death rate. Disabled 
persons experience the same recovery rate and death rate. We construct 
the lifepath of the 1,000 subjects during a 10-year period. Continuous-time 
microsimulation is used to determine, for each subject, the time to transition 
to disability, recovery, or death. Two random variables are generated. The 
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first is the time to transition drawn from an exponential distribution that is 
characteristic for the state of origin. Healthy subjects leave the state of being 
healthy at a time that is determined by μ1+ = 0.15. For each subject, the exit 
time is drawn from an exponential distribution with parameter μ1+ = 0.15. 
The destination state is determined by drawing a random number from a 
uniform distribution. If the number is between 0 and 0.8, the healthy subject 
who discontinues to be healthy becomes disabled. If the number is between 
0.8 and 1.0, the subject dies. The recovery and death of subjects with dis-
ability are determined in a similar way. The time to transition or exit time 
is drawn from an exponential distribution with parameter μ2+ = 0.12 and 
the direction is determined by drawing a random variable from a uniform 
distribution. Recovery occurs when the random variable is between 0 and 
0.6. If the value of the variable exceeds 0.6, the subject dies. Table 3 shows 
the state occupancies every year of the period from 0 to 10. The sample 
observations are close to the expected values. Note that all virtual subjects 
are followed for a period of 10 years. Censoring is at year 10. 

Table 3:	 State occupancies, sample values

Year Healthy Disabled Dead
0 0 0 0
1 863 112 25
2 758 185 57
3 649 261 90
4 551 313 136
5 481 347 172
6 439 355 206
7 393 368 239
8 358 373 269
9 333 369 298
10 306 370 324

Of the 1,000 healthy subjects at the start of the process, 676 become disabled 
for at least some period and 172 die while healthy (including those who 
never became disabled and the 156 who recovered from disability before 
death). 153 die in disability. At the end of the observation at year 10, 306 are 
healthy, 370 disabled and 324 dead. 

The sampling from the virtual population through microsimulation 
gives information on the population that cannot or cannot easily be obtained 
otherwise. The 1,000 subjects experience 1,157 transitions (Table 4). Most are 
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from healthy to disability. 676 transitions initiate an episode of disability. Of 
the 676 episodes of disability, 156 end in recovery, 153 in dead and 367 are 
truncated when year 10 is reached. The table also shows the health status 
at death: 172 are healthy and 153 disabled. 

Table 4:	 Transitions, sample

DESTINATION
ORIGIN Healthy Disabled Dead Total
Healthy 0 676 172 848
Disabled 156 0 153 309
Dead 0 0 0 0
Total 156 676 325 1157

The healthy subjects that become disabled during the observation window 
of 10 years, become disabled after 3.9 years, on average. Disabled subjects 
that recover, recover at 5.9 years, on average. Although disabled subjects 
have a mortality that is twice that of healthy subjects, they die later than 
healthy subjects: 5.8 years versus 4.2 years. The difference is due to the 
relatively late onset of disability, the low recovery rate and the high death 
rate for healthy subjects that is independent of time since onset of the proc-
ess. As a consequence, many healthy subjects die before the mean age at 
onset of disability. 

A major advantage of continuous-time microsimulation is the possibil-
ity of multiple transitions within a year. The number of multiple transitions 
is relatively rare: 9.9% of the subjects experience two transitions and 0.4% 
three transitions. 

The total number of years spent alive during the observation period 
is 8.3 years. An average subject spends 5.4 years healthy and 2.9 years disa-
bled. 

During the 10-year period, the 1,000 subjects follow 10 different life-
paths. The lifepath is the sequence of states. If H denotes healthy, D disabled 
and + dead, then a lifepath may be represented by a character variable. The 
most common path is HD (healthy – disabled). A total of 325 subjects follow 
that path. 217 subjects remain healthy throughout the 10-year period; they 
do not experience any transition. The lifepath is H. Of the 172 subjects who 
die while healthy, 161 die before experiencing a disability, 11 after recovery 
from a first period of disability and 3 after recovery from a second period 
of disability (Table 5). The table also shows the mean ages at transition, 
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followed by the character denoting the transition. Note that subjects with 
multiple transitions generally experience the transition earlier than subjects 
with a single transition. 

Table 5:	 Lifepaths during 10-year period, sample of 1,000 subjects

Pathway Number Name Mean age at transition
1 325 HD 4.24D
2 217 H
3 161 H+ 4.03+
4 150 HD+ 2.68D 5.67+
5 84 HDH 3.32D 6.79H
6 40 HDHD 2.36D 4.88H 7.25D
7 11 HDH+ 1.96D 4.15H 5.77+
8 7 HDHDH 1.49D 2.85H 5.74D 7.67H
9 3 HDHD+ 1.64D 3.86H 4.97D 6.78+
10 2 HDHDHD 3.38D 3.92H 6.50D 8.04H 8.17D

3.3	 Covariates and interventions

Hazard rates generally depend on personal attributes or covariates. Time-
invariant covariates include sex and place of birth. Time-varying covari-
ates include level of education, marital status, employment status, place of 
residence and health status. The time-path of time-varying covariates is a 
continuous-time process. It may be approximated by a discrete-time proc-
ess when piecewise constant hazard rates are used and the covariates are 
allowed to change at the beginning of time intervals only. In that case, the 
values of the covariates are updated at the beginning of each interval and 
the hazard rate is obtained depending on the new values of the covariates. 
When covariates are allowed to change at any time during the interval, i.e. 
in continuous time, the interval is split in two or more subintervals and the 
hazard rates are derived for each subinterval. In other words, the hazard 
rates are updated whenever covariate values change. That procedure of 
interval splitting is similar to episode-splitting in event-history modeling 
(Blossfeld and Rohwer, 2002: 140ff.). The technique involves the splitting 
of episodes at every point in time where one of the time-varying covariates 
changes its value. Each of the original episodes is replaced by a contiguous 
set of subepisodes (splits) with appropriate values of the covariates. Interval 
splitting is implemented in LifePaths. 
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By way of example, consider the disability model and consider an 
intervention programme that reduces the incidence of disability and in-
creases the rate of recovery once disability has struck. Subjects enrol in the 
programme at different ages and they remain enrolled till the end of the study 
period, which is 10 years. If a healthy subject enrols in the programme, the 
incidence rate of disability drops by 50%. Hence the rate after enrolment is 
0.5 times the rate before enrolment. Subjects that are disabled and enrolled 
in the programme have a higher rate or recovery. The rate is assumed to 
be three times the rate for subjects not enrolled. Since subjects may enrol 
at any age, being enrolled is a time-varying covariate. The transition rates 
after enrolment may be written as

[ ]
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Where x denotes age, )(xme

ijk   the rate at which subject k changes from state 
i to state j at age x, and kX(x) is the time-varying covariate that is equal to 
one if subject k is enrolled at age x and is 0 otherwise. 

To determine who enrolled in the programme and at what age, i.e. to 
determine the values of kX(x), a random sample is drawn from the virtual 
population. It is assumed that, at the population level, 10% of the subjects 
not yet enrolled at the beginning of a year enrol in the programme. The 
enrolment rate is independent of the health status, but of course depends 
on the enrolment status. If the treatment programme is conditional on par-
ticipation in the prevention programme, only healthy subject may enrol and 
the enrolment rate is dependent on the health status. Since the enrolment 
rate is independent of the health status, the expected proportion of subjects 
enrolled after a period of 10 years is 61.4% (=100*[1-1/(1+0.10)10]). In the 
sample, 712 subjects enrolled, i.e. 71%. Table 6 shows the number of new 
yearly enrolments in the sample of the virtual population. 

In the presence of the intervention programme, less subjects in the 
sample of the virtual population enter disability (613 versus 676) and more 
recover from disability (231 versus 156). More subjects die healthy (180 
versus 172) because more subjects are healthy and are healthy longer. In 
the sample population, more subjects may expect to be healthy after 10 
years (437 versus 306) and less are disabled (239 versus 370). Because of the 
intervention, subjects spend more years healthy (6.3 years versus 5.4 years) 
and less in disability (2.2 years versus 2.9 years). The expected number of 
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years spent alive during the observation period decreases a little (8.4 years 
versus 8.3). 

If the entire population enrols in the intervention programme at the 
start of the observation period, the effect is more significant. In that case the 
number of healthy years is 7.2 and the number of years in disability is 1.3. 
The total number of years lived during the observation period is 8.5. 

Table 6:	 Number of new enrolments by year

Year Enrolment
0 124
1 84
2 80
3 83
4 62
5 58
6 51
7 64
8 34
9 42
10 30

TOTAL 712

4	 Conclusion and discussion

Continuous-time microsimulation has some advantages over microsimula-
tion in discrete time. The main advantage is that the dates of events and 
the sequences of events can be determined accurately using the theory of 
competing risks and continuous-time multistate transition models. Whereas 
in discrete-time microsimulation sampling from a uniform distribution 
determines the event occurrences, in continuous-time microsimulation the 
sampling is from a waiting time distribution. The main tool for continuous-
time microsimulation is the inverse distribution function or quantile func-
tion. For a given transition model, the function translates the probability of a 
transition during an interval into a waiting time. Different transition models 
have different quantile functions. The method based on the quantile func-
tion is a general method that applies to all waiting time models and other 



 
Continuous-time Microsimulation in Longitudinal Analysis

373

models as well. The chapter illustrates the method using the exponential 
model. Other transition models for which quantile functions can be defined, 
may be applied in continuous-time microsimulation. 

The ultimate aim of microsimulation is to produce a virtual population 
that closely resembles a real population and to use the virtual population to 
study characteristics of the real population and to perform experiments in 
silico that are not possible in real populations (in vivo). The major weakness 
of microsimulation is the dependence on the model. If the model is a weak 
representation of a population, then the results of microsimulation lack 
validity. In microsimulation, a good model is a necessary condition but it 
is not sufficient. The sample size also matters. The virtual population must 
be sufficiently large to closely resemble the real population. With today’s 
computer technology, that weakness can easily be overcome. 

With the advent of the R programming environment, continuous-time 
microsimulation is becoming more easy to implement. The standard R library 
generates quantile functions for a wide variety of probability distributions, 
including the exponential and the Weibull distributions but not the Gompertz 
and the Cox model. Some packages in the R library are particularly useful. 
For instance, the msm (multistate Markov model) package contributed by 
Jackson (2009) includes a function to estimate a continuous-time Markov 
model from empirical data and another function (sim.msm.r) that uses the 
model to simulate individual event sequences. Packages recently developed 
by Putter et al. (2007) and ����������������������������������������������Meira-Machado��������������������������������� et al. (2009) also estimate mul-
tistate transition models that may be used to simulate life histories. These 
developments substantially reduce the programming costs of continuous-
time microsimulation. Computing time is not substantially larger than in 
discrete-time microsimulation. The reason is that the application of the 
quantile function does not involve any iteration. These developments are 
expected to enhance the use of continuous-time microsimulation in the 
study of life histories. 
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Annex A: Continuous-time microsimulation models

Few continuous-time microsimulation models exist. They include the SOC-
SIM model developed by Hammel et al. at Berkeley (Hammel et al., 1976; 
Hammel, 1990),1,2 the demographic PopSim part of the DYNAMOD model 
developed at NATSEM (Antcliff, 1993), MICROHUS of Uppsala University 
(Klevmarken and Olovsson, 1996), LifePaths of Statistics Canada (Gribble, 
1997; Statistics Canada, 2001) and PENSIM of the US Department of Labor 
(Holmer et al., 2006). PENSIM uses the same algorithm as LifePaths (Hol-
mer et al., 2006: 3). The algorithm consists of drawing a sample of waiting 
times to event and comparing waiting times, generated by hazard models, 
to determine the timing and sequence of events. For a description of several 
of these models, including LifePaths, see Zaidi and Rake (2001). Zaidi and 
Rake assert that “The LifePaths’s choice of the continuous time is definitely 
desirable from a theoretical point of view, although the use of continuous 
time puts heavy demand on the underlying data and computer resources.” 
(Zaidi and Rake, 2001: 16). The methodology of microsimulation in continu-
ous time was discussed as early as 1986 by Wolf (1986). Researchers at Sta-
tistics Canada developed a general-purpose environment for programming 
microsimulation models, called Model Generator (ModGen). The ModGen 
language is a superset of the C++ programming language. This environ-
ment provides a common code-base for modellers which they can use to 
generate microsimulation models that are variants of LifePaths. Statistics 
Canada uses this environment to generate several special-purpose models 
such as the Population Health Model (POHEM) that uses the demographic 
module of LifePaths but replaces the mortality equations with a highly 
detailed model of morbidity and mortality. Spielauer (2006) provides a 
step-by-step documentation of a continuous-time microsimulation model 
programmed in ModGen and applied to study fertility change using survey 
data. Dynamic microsimulation models are transition rate (hazard) models; 
they use information on members of different birth cohorts to generate life 
histories of individuals. For a nice illustration, see Rowe and Nguyen (2004), 
as well as Spielauer (2006). 

1	 For an extensive bibliography, see www.demog.berkeley.edu/~wachter/socrefs.html
2	 In SOCSIM, time is measured in integral months (Wachter et al., 1998: 10). The same 

approach is used in DYNAMOD (Kelly, 2003: 4).


