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Abstract. Fires in tropical forests release globally significant amounts of carbon to the
atmosphere and may increase in importance as a result of climate change. Despite the striking
impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still
hampers our ability to simulate tropical forest fire regimes today and in the future. Here we
present a probabilistic model of human-induced fire occurrence for the Amazon that integrates
the effects of a series of anthropogenic factors with climatic conditions described by vapor
pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003
and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded
fitness values .85% for all months from 2002 to 2005. Simulated fires exhibited high overlap
with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial
fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We
applied this model to simulate fire regimes in the Amazon until 2050 using IPCC’s A2 scenario
climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of
deforestation and road expansion from SimAmazonia. Results show that the combination of
these scenarios may double forest fire occurrence outside protected areas (PAs) in years of
extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury.
In particular, forest fires may increase substantially across southern and southwestern
Amazon, especially along the highways slated for paving and in agricultural zones. Committed
emissions from Amazon forest fires and deforestation under a scenario of global warming and
uncurbed deforestation may amount to 21 6 4 Pg of carbon by 2050. BAU deforestation may
increase fires occurrence outside PAs by 19% over the next four decades, while climate change
alone may account for a 12% increase. In turn, the combination of climate change and
deforestation would boost fire occurrence outside PAs by half during this period. Our
modeling results, therefore, confirm the synergy between the two Ds of REDD (Reducing
Emissions from Deforestation and Forest Degradation in Developing Countries).
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INTRODUCTION

Human-induced fires play a major role in the

dynamics of Amazon forests. Widespread fires burned

;40 thousand km2 of Amazon forests during the 1997–

1998 ENSO (El Niño-Southern Oscillation) event

(Nepstad et al. 1999b, Alencar et al. 2006). The advent

of anthropogenically driven climate change predicts

even more human-induced fires not only because of

predicted longer dry seasons in some forest regions

(Nobre et al. 1991, Malhi et al. 2008), but also due to the

reduction of the intervals between extreme drought

events (Cox et al. 2004, Marengo et al. 2008). Aside

from immediate disturbance effects that can cause a loss

of up to 30% of the ecosystem’s original complement of

species (Slik et al. 2002), the negative consequences of a

fire may last for many years. Tree mortality continues

for at least two years (Holdsworth and Uhl 1997), and

even after 15 years, forests have not regained lost species

(Slik et al. 2002). Thus, modeling fire occurrence in the

Amazon can be a key approach to assess the effects of

the interaction between climate and land use on fire

regimes, and thereby to mitigate their potential impacts.

Forest fires also influence global warming. Alencar et

al. (2006) estimated that annual committed carbon

emissions from fires in the Brazilian Amazon may

amount to 0.094 6 0.070 Pg (1 Pg¼ 109 tons) in ENSO

years. However, this figure can be far surpassed in

extreme El Niño years, such as the event of 1997–1998,

when emissions from forest fires in Mexico, the Amazon,
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and Indonesia totaled 1.6 Pg of carbon (Cairns et al.

2000, Phulpin et al. 2002, Page et al. 2003), the

equivalent of 18% of current fossil fuel emissions

worldwide (JRC 2009). Not only do forest fires alter

atmospheric composition, they also interrupt rain cloud

formation (Ackerman et al. 2000), thereby reducing

rainfall (Andreae et al. 2004) and increasing the average

residence time of aerosols in the atmosphere

(Ramanathan et al. 2001). These effects also have a

significant negative impact on human health (Mendonça

et al. 2004). For example, during the extreme drought

that affected southwestern Amazon in 2005 (probably

associated with the abnormal warming of the tropical

North Atlantic [Marengo et al. 2008]), over 40 thousand

people in the State of Acre sought medical care due to a

persistent smoke plume, which stemmed from multiple

fires that burned 300 000 ha of forest in that region

(Brown et al. 2006, Aragão et al. 2007).

During Pre-Columbian times, widespread fire events

affected the Amazon forest at intervals of 400–700 years

and were probably associated with extremely severe

droughts (Meggers 1994). Currently, however, economic

and demographic growth in the tropics has shortened

the frequency of these events to every 5–15 years

(Goldammer 1990, Cochrane et al. 1999, Alencar et al.

2006). As the agricultural frontier advances in the

Amazon region, the risk of wildfire increases. Pasture

and crop areas reduce evapotranspiration and contrib-

ute to lower humidity, and the widespread use of land-

management practices that involve fire provides ready

ignition sources (Nepstad et al. 2001). As a result, forest

fires are more common along the forest edge (Laurance

et al. 1997, Cochrane 2001, Cochrane and Laurance

2002, Alencar et al. 2004), not only because fires escape

from areas of pasture and cropland that are being

burned, but also as a result of drier climatic conditions

on neighboring deforested areas (Kapos et al. 1993,

Gascon et al. 2000). In addition, extensive deforestation

may lead to a reduction in rainfall over the Amazon

(Sampaio et al. 2007, da Silva et al. 2008), augmenting

the risk of loss of a large portion of the Amazon forest

to climate change-induced fires as early as 2020 (Golding

and Betts 2008). Logging also makes the forest

vulnerable to fire by opening the canopy and thus

increasing light penetration that lowers humidity and

enhances forest flammability (Uhl and Kauffman 1990,

Cochrane et al. 1999, Nepstad et al. 2001). In a similar

way, fire begets more fire as it kills trees, increasing light

penetration and, initially, adding more dry fuel to the

forest floor in a vicious positive feedback loop (Nepstad

et al. 2001).

In sum, the synergy between deforestation, logging,

land management practices associated with fire, and

increasingly drier climate may increase fire activity in the

Amazon, leading the remaining forests toward a vicious

cycle of impoverishment (Nepstad et al. 2001), culmi-

nating in a tipping point that may be reached within the

next two decades (Golding and Betts 2008, Nepstad et

al. 2008).

Despite the striking impacts of fire on tropical forest

ecosystems, fire modeling in the tropics is still in its early

stages (Cochrane 2003, Balch et al. 2008). One of the

major challenges for tropical fire modeling is the absence

of data and models on fire fuels, which are crucial to

predict the potential for ignition and duration of a fire

(Cochrane 2003). Second, the understanding of fire

dynamics, and thus fire behavior in different types of

fuels and environments, is still limited (Cochrane et al.

1999). Moreover, fire data, including fire duration,

burned area, and location, are not available and their

acquisition depends on high-resolution remote-sensing

imagery combined with fieldwork. In short, wildfire

models (e.g., NWGC 2002, Venevsky et al. 2002, CFS

2007) involve multiple components (i.e., ignition and

propagation submodels) comprising numerous parame-

ters that still need to be adapted and calibrated to the

biophysical characteristics of the diverse Amazon

landscapes.

Some studies have attempted to develop models of fire

risk for the Amazon. For example, Cardoso et al. (2003)

analyzed climatic and biophysical variables to model fire

occurrence on a 2.58 3 2.58 cell grid for the dry seasons

of 1995 and 1997. Sismanoglu and Setzer (2005)

developed a model to calculate the risk of fire at a

resolution of 25 3 25 km for the entire Brazilian

territory, taking into account climatic and vegetation

variables processed at daily time steps. Nepstad et al.

(2004) developed RisQue, a model that estimates plant

available water (PAW) as an indicator of forest fire risk

for the entire Amazon, and Alencar et al. (2004)

quantified the relationship between landscape parame-

ters and forest fire occurrence in the eastern Amazon.

Most of these studies took advantage of the Fire

Monitoring Project, an initiative of the Center for

Weather Forecast and Climate Studies (CPTEC) of

Brazil’s National Institute for Space Research (INPE)

that detects burning sites (hot pixels) by using satellite

imagery and publishes these data on the Internet

(information available online).6 Hot pixels on a satellite

image consist of the signal detection of the radiance of

fire flames with temperature around 1000 K, whose

emission peak is situated in the middle infrared region

(e.g., channel 3 in Advanced Very High Resolution

Radiometer [AVHRR]: 3.55–3.93 lm). A fire needs to

occupy only a small fraction of the total pixel area to

saturate the middle infrared channel and thus be

detected (Schroeder et al. 2005).

Although hot pixel data do not usually detect

understory fires (Nepstad et al. 1999a, INPE 2008a)

and thus do not measure area burned in the forest

(INPE 2008a), they can be used to map fire occurrence

6 hwww.cptec.inpe.br/queimadasi
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in close proximity to forest borders that may represent

potential ignition sources to forest fires.

Within this context, we developed a model of human-

induced fire occurrence for the Amazon region (defined

here as the Amazon River Basin, the Brazilian Legal

Amazon, and the Guiana shield) that integrates climate

and land-use data to simulate monthly occurrences of

hot pixel, which represent fire activity within the

Amazon forest and along its fringe (a four-km buffer

around the forest). We used this model to simulate

future fire regimes (i.e., spatial and temporal patterns of

fire occurrence) in the Amazon in response to climate

change and deforestation in order to estimate potential

carbon emissions from forest fires, an important

component of REDD (Reducing Emissions from

Deforestation and Forest Degradation in Developing

Countries), a policy that would be supported through

the new climate treaty under negotiation within the

United Nations Framework Convention on Climate

Change (Nepstad et al. 2009). In addition, the model

presented here represents a step towards an integrated

model that aims to assess the likelihood of a near-term

forest dieback tipping point due to the complex

interactions between deforestation, logging, fire, and

climate change in the Amazon (Nepstad et al. 2008).

MODEL DEVELOPMENT

The present model estimates the probability of fire

occurrence by integrating climatic conditions (as de-

scribed by vapor pressure deficit [VPD] data) with a

series of biophysical and land-use variables, such as

elevation, distance to roads and towns, and legal

restrictions (i.e., protected vs. non-protected areas).

The idea behind this approach is to capture both the

anthropogenic land use and weather determinants of fire

occurrence. The model follows four steps. First, annual

anthropogenic probability of fire, given a set of spatial

variables, was obtained by employing Weights of

Evidence, a Bayesian method appropriate for modeling

spatial data (Bonham-Carter 1994, Soares-Filho et al.

2004). Next, we developed a map of climatic risk by

applying logistic regression on monthly VPD data and

followed by merging these two probability maps into a

single one using a weighted average. The model then

used this combined probability map to stochastically

simulate the quantity and location of hot pixels at

monthly time steps and at a spatial resolution of 2 3 2

km. Hot pixels that we used consisted of daily fire signal

detection by AVHRR aboard the National Oceanic and

Atmospheric satellite (NOAA-12) with passages across

the equator at 21:00 Coordinated Universal Time.

NOAA-12 night satellite hot pixel data from 2003 were

used to calibrate the model; the data from this year most

closely approximated the mean for the analyzed time

period (2002–2005). The model was validated using hot

pixel data from 2002, 2004, and 2005.

Finally, we simulated future Amazon fire regimes to

the year 2050 under three scenarios: the first consists of

the A2 climate scenario of IPCC (Intergovernmental

Panel on Climate Change) using simulated data from the

Hadley Centre’s HadCM3 model (Cox et al. 1999), the

second is a business-as-usual (BAU) scenario of

deforestation and road expansion from SimAmazonia

(Soares-Filho et al. 2006), and the third is the

combination of these two scenarios. We then compared

the simulated fire regimes under these three scenarios

with fire occurrence in the Amazon during the 1999–

2005 period. All modeling phases were developed using

Dinamica EGO freeware, an innovative environmental

modeling platform that holds a complete solution for

calibrating, running, and validating space–time models

(Soares-Filho et al. 2010b). Each of these steps is

described in detail in the sections that follow.

Anthropogenic risk of fire

Previous studies have shown that fire occurs more

frequently in the Amazon in logged and previously

burned forests (Nepstad et al. 1999b), and is associated

with roads (Cardoso et al. 2003, Alencar et al. 2004) and

forest edges (Alencar et al. 2004). In contrast, protected

areas and indigenous lands show lower rates of

deforestation and fire occurrence than their surrounding

areas, which can be considered an inhibitory effect

(Nepstad et al. 2006b, Soares-Filho et al. 2010a). Of

these factors, we selected the following variables to

compose the anthropogenic risk of fire: (1) distance to

deforested or cerrado areas, (2) distance to forest, (3)

distance to towns, (4) distance to roads, (5) elevation,

and (6) protected areas, including conservation reserves,

sustainable use areas, and indigenous lands. All distance

variables measure the Euclidian distance between each

map cell to the closest map cell of the target feature.

These variables were selected because they showed low

spatial correlation to each other and strong spatial

association with fire occurrence according to the

Weights of Evidence analysis. The cartographic data

set employed in this work comes from various sources.

Elevation is derived from SRTM (Shuttle Radar

Topography Mission) maps, towns from IBGE

(Instituto Brasileiro de Geografia e Estatı́stica; IBGE

2005), forest and deforested areas from PRODES

(Programa de Cálculo do Desflorestamento da

Amazônia; INPE 2008b), and roads together with

protected areas and indigenous lands from data sets

compiled by Soares-Filho et al. (2010a).

Weights of Evidence is a Bayesian method tradition-

ally used to derive favorability maps for spatial point

phenomena (Agterberg and Bonham-Carter 1990,

Bonham-Carter 1994, Soares-Filho et al. 2010a, b). In

this study, weights of evidence (Wþk ) are calculated for

every k category of each spatial variable under analysis

and can be interpreted as the influence of that category

on the chances of hot pixel occurrence. Since this

method only applies to categorical data, it is necessary

to categorize continuous gray-tone variables, such as

distance-decay maps; this is done using a method
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adapted from Agterberg and Bonham-Carter (1990) in

Dinamica EGO (Soares-Filho et al. 2010b).

Given a set of spatial variables fB1, B2, B3, . . . , Bkg
the probability of a hot pixel is denoted as follows:

PðHotPixel jB1 \ B2 \ B3 \ ::::BkÞðx;yÞ

¼ e

X
Wþk

1þ e

X
Wþk

ð1Þ

where P(HotPixel jB1 \ B2 \ B3 \ . . . . Bk)(x,y) is the

probability of occurrence of a hot pixel given a set

explanatory variables at a cell location (x, y), and Wþk
is the weight of evidence coefficient for a category of

variable Bk. To derive weight of evidence coefficients for

each variable category under consideration, we super-

imposed the 2003 binary map of hot pixel occurrence

within a grid cell of 2 3 2 km with maps of these

variables. In the following sections, P(HotPixel jB1 \ B2

\ B3 \ . . . . Bk)(x,y) for a year j will be referred to as

Pbiop(x,y),j. High positive values for weights of evidence

favor the modeled event: the higher the value, the

stronger the association. On the other hand, a negative

Wþk value indicates an inhibitory effect, whereas values

close to zero are consistent with no association

(Bonham-Carter 1994). The only assumption of this

method is that all explanatory variables be independent.

In order to test this assumption, we measured the

correlation between pairs of variables applying the Joint

Information Uncertainty Test (Bonham-Carter 1994).

In addition, we evaluated the explanatory power of each

variable by comparing the Weights of Evidence Contrast

(Wþk � W�k ) for each of the variable categories, so that

the most significant variables showed the highest

Contrast, and thus, the strongest relation with hot pixel

location. The probability map is calculated integrating

all the Wþk by means of Eq. 1. The anthropogenic-risk

probability map is updated on an annual basis

employing outputs from SimAmazonia (Soares-Filho

et al. 2006), thereby incorporating the effects of new

roads and the advance of deforestation.

Climatic risk of fire

Former studies have modeled fire activity using

climatic variables such as precipitation, temperature,

relative humidity (Cardoso et al. 2003, Sismanoglu and

Setzer 2005), and forest flammability using plant

available soil water (PAW; Nepstad et al. 2004) and

understory vapor pressure deficit (Ray et al. 2005). In

this study, we selected vapor pressure deficit (VPD)

obtained from meteorological stations (a measure of

evaporative demand of the atmosphere that integrates

the influence of temperature and relative humidity) as

the sole explanatory variable for modeling the influence

of climate on hot pixel occurrence for three reasons.

First, box plot graphs with monthly values of VPD from

hot pixels (Fig. 1) showed a strong positive association

between these two variables. Second, as VPD integrates

and thus is correlated with other climatic variables

commonly applied to fire modeling, such as precipita-

tion history, PAW, and relative humidity, only one of

them could be employed in the logistic regression

analysis; the best fit was obtained when only VPD was

used (Table 1). Third, Ray et al. (2005) have shown that

understory VPD, which can be derived from meteoro-

logical VPD and forest structural information (e.g.,

canopy height, leaf area index), is a strong predictor of

forest flammability. Monthly VPD means were obtained

from a subset of 266 meteorological stations distributed

throughout the Amazon and interpolated to generate

monthly maps from 1995 to 2005 at a grid resolution of

8 3 8 km (Hirsch et al. 2004).

Due to the fact that climate seasonality differs in the

northern and southern hemispheres, we had to develop a

general model that could describe the climatic risk for

fire on a monthly basis throughout the year and across

the entire Amazon. Therefore, we tested different

approaches to derive a single relationship that could

be applied to all different regions and seasons. The best

approach consisted of adjusting a separate logistic

regression for each month, in which the response

variable is the binary hot pixel occurrence within 2 3 2

km grid cell and the explanatory variable is the monthly

mean VPD, and then estimating the average equation

that could be used in all months, as follows:

Pclðx;yÞ;i; j ¼
eb0iþb1iVPDðx;yÞ;i; j

1þ eb0iþb1iVPDðx;yÞ;i; j
ð2Þ

where Pcl(x,y),i, j represents the probability of a hot pixel

given VPD in cell (x,y) in month i and year j, and b0i and
b1i are the parameters of the logistic regression for

month i. By replacing the b0i and b1i values with the

2003 mean values, we obtained the formula expressed in

Eq. 3, which is the general equation for calculating the

monthly climatic risk for the time series under analysis:

Pclðx;yÞ;i; j ¼
e�5:0820þ4:1005VPDðx;yÞ;i; j

1þ e�5:0820þ4:1005VPDðx;yÞ;i; j
: ð3Þ

Integrating anthropogenic and climatic risks

Forest fire risk is determined by a combination of

anthropogenic factors and favorable weather conditions.

Hence, our approach consisted of merging both

anthropogenic and climatic risk maps into one. After

testing several approaches to generate a probability of

fire that accounted for both biophysical and climatic

factors (e.g., combining the two probability maps using

the Weights of Evidence method or through geometric

averaging), we chose to weight average the two maps

using different weight values according to periods of the

year (Eq. 4), given that this approach yielded the highest

Relative Operating Characteristic (ROC) indices (ROC

is a method for evaluating favorability/probability maps

vs. observed data [Pontius and Schneider 2001]):
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Pðx;yÞ;i; j ¼ aiPbiopðx;yÞ; j þ ð1� aiÞPclðx;yÞ;i; j ð4Þ

where P(x,y),i, j is the combined probability of hot pixel

occurrence for a cell (x, y) in month i of year j.

Pbiop(x,y),i, j is the probability of fire given a set

biophysical factors in year j, and Pcl(x,y),i, j represents

the probability of fire given climatic conditions for

month i of year j.

We chose a values in order to simultaneously

maximize ROC statistics of P(x,y),i, j for all months of

2003. As a result, this parameter assumed a value of 0.2

from January to April and 0.4 for the other months. In

essence, this latter value relates loosely to the burning

season associated with deforestation in the southern

Amazon, which extends into December. The values we

found for a suggest that fire risk is more directly

impacted by climatic than anthropogenic factors,

possibly because favorable weather conditions are a

precondition for human-induced fires.

Simulation of fire occurrence

Our model stochastically simulates the occurrence of

hot pixels at monthly time steps using the combined fire

risk probability map and taking into account the spatial
and temporal dependence between hot pixels. The

spatial dependence between fire events has already been

considered for predicting fire occurrences (Sismanoglu
and Setzer 2005). In this work, we tested the spatial

dependence between hot pixels for each month of 2003

by employing the Moran Autocorrelation Index, which

was normalized to a f�1, 1g interval to facilitate
interpretation (Bailey and Gatrell 1995). The Moran

Autocorrelation Index indicates the extent to which the

occurrence of a hot pixel influences the occurrence of

FIG. 1. Box plots of vapor pressure deficit (VPD) and number of hot pixels for 2003. For each month, boxplot graphs show a
summary of VPD statistics: median (center line), first quartile (lower box bound), third quartile (upper box bound), outliers
(circles), sample minimum excluding outliers (horizontal lower bar), and sample maximum excluding outliers (horizontal upper
bar). There is a positive association between VPD and number of hot pixels. In the beginning of the year, the number of hot pixels is
low and so are the lower boundaries of the VPD box plots. From May onward, hot pixel number increases until August and
September, and then declines again at the onset of the rainy season, showing the same seasonal pattern as VPD.

TABLE 1. Percentage agreement between observed and predicted hot pixels per month using the
climatic probability risk equation (Eq. 3).

Month

Hot pixels predicted : observed (%)
Total correct

classification (%)1:1 1:0 0:1 0:0

Jan 16 7 24 53 69
Feb 38 6 3 54 91
Mar 38 5 2 56 94
Apr 21 8 19 52 74
May 34 9 6 51 85
Jun 39 15 1 46 85
Jul 65 12 1 21 87
Aug 61 13 6 20 81
Sep 57 15 9 18 76
Oct 14 19 26 41 55
Nov 16 51 7 27 42
Dec 8 5 43 45 53

Note: The ‘‘total correct classification’’ column corresponds to the sum of the second and fifth
columns. The values 0 and 1 are binary factors indicating occurrence (1) or absence (0) of fire, for
both simulated and observed hot pixels.
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another one in neighboring cells. This test was

significant (P , 0.05), demonstrating a positive depen-

dence between nearby hot pixels, in particular for the

dry-season months (Table 2).

The next step consisted of identifying the probability

density function of the hot pixel occurrences, a standard

procedure for developing stochastic simulations. The

density function of the monthly fire risk maps for 2003

hot pixels showed that the probability functions from

January to September matched a Beta (0.985;0.1)

distribution truncated at 0.5, while those from October

to December approximated a Weibull (13;0.6) distribu-

tion. These distributions were employed to draw random

numbers for the cell selecting mechanism so that for

each cell, a hot pixel would occur if

ðqðx;yÞ;i; j � ciÞ, Pðx;yÞ;i; j ,ðqðx;yÞ;i; j þ ciÞ ð5Þ

where P(x,y),i, j is the probability of hot pixel occurrence;

q(x,y),i, j corresponds to a random number drawn from

the probability density function according to month i of

year j for the (x,y) cell, and ci is a constant (Table 3)

used to control the number of simulated hot pixels by

increasing the acceptance interval.

In order to incorporate the spatial and temporal

dependences between hot pixels, we divided the cell-

selecting process into 10 loops, each one analyzing only

10% of the total number of cells, so that after the 10th

iteration the entire map has been completely analyzed.

After each loop, the spatial dependence is incorporated

into the model, multiplying the probability of neighbor-

ing cells (considering a Moore neighborhood of eight

adjacent cells) of simulated hot pixels by 1 plus the

Moran Index of the corresponding month (Table 2) and

limiting the maximum probability value to 0.9999 to

avoid probabilities greater than or equal to 1. Because

the number of hot pixels depends on the map resolution,

the last procedure within the loop consists of sampling

only a percentage of selected cells to become simulated

hot pixels by applying a pruning factor according to

Table 4. Both c and pruning factor values were

established by interactively maximizing the match

between the simulated number of hot pixels with

observed ones.

Model validation

We validated the model by comparing its predictions

to the observed data for 2002, 2004, and 2005 on a

monthly basis using three fitness measures. One is the

Relative Operating Characteristics (Pontius and

Schneider 2001). ROC statistics measure the level of

agreement between a probability or favorability map

and a map with the observed events (in this case, the

map of actual hot pixels). A value of 1.0 indicates a

perfect match, whereas values close to 0.5 can be

expected due to chance.

The second method applies a fuzzy map comparison

between the monthly simulated and the observed hot

pixels (Almeida et al. 2008, Soares-Filho et al. 2010b).

This method compares the number of cells of a certain

class in a simulated map with the number of these cells

in a reference map that fall within a central cell

neighborhood, as defined by a window size. By using a

constant decay function, if a matching cell is found

within the window, fit is assigned to 1, and otherwise

takes on a value of 0. Windows with increasing sizes

convolute over the map and a mean is computed for

each window size. This method employs a reciprocal

approach, comparing the match between map 1 and

map 2, and vice versa, ultimately choosing the minimum

mean in order to penalize random maps, which tend to

overestimate the fit. In this manner, this method

accounts for both omission and commission errors.

Our comparison employed increasing window sizes from

1 to 11 cells, which in terms of spatial resolution

represent a range from 23 2 km to 223 22 km. Finally,

the third method compares the total number of

simulated hot pixel cells to observed hot pixel cells on

a monthly basis using time series graphs.

TABLE 2. Adjusted Moran’s autocorrelation index by month
and respective P values for 2003 monthly hot pixel data.

Month
Moran’s

index value P

Jan 0.139 0.003
Feb 0.305 0.002
Mar 0.221 ,0.001
Apr 0.215 0.002
May 0.294 ,0.001
Jun 0.386 ,0.001
Jul 0.392 ,0.001
Aug 0.316 ,0.001
Sep 0.283 ,0.001
Oct 0.245 0.002
Nov 0.179 0.002
Dec 0.229 0.003

TABLE 3. The c values obtained in the simulation for two time
periods.

Months (i) ci

Jan–Apr and Oct–Dec 0.05
May–Sep 0.09

Note: In the simulation, c values are used to customize the
acceptance interval of hot pixel occurring to the climatic
characteristics of each month, controlling as a result the
number of simulated hot pixels according to seasonal variabil-
ity.

TABLE 4. Pruning factors control the number of fire occur-
rence by keeping only a percentage of selected cells as
simulated hot pixels.

Months (i )
Pruning
factor i

Jan–May 0.995
Jun, July, and Oct–Dec 0.999
Aug and Sep 0.997
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Projecting future fire regimes

Climate model experiments predict that large portions

of the Amazon forest may be replaced by savanna-like

vegetation as a consequence of climate change (Cox et

al. 2000, 2004, Botta and Foley 2002, Oyama and Nobre

2003, Collins 2005, Li et al. 2006, Salazar et al. 2007).

However, none of these experiments include the effects

of fires on the Amazon forest. In order to fill this gap, we

applied the Hadley Centre HadCM3 projections for the

IPCC’s A2 scenario to evaluate the role of climate

change in the Amazon fire regime. We chose this model

because it successfully replicates the effects of El-Niño

droughts on the climate in the Amazon (Collins 2005,

Cox et al. 2008), and thus, it is widely used to simulate

climate change over the Amazon (e.g., Cox et al. 2000,

2004). Among the IPCC scenarios that do not consider

climate change mitigation efforts, the A2 scenario

presents the highest CO2 emission rates due to a steady

increase in global population, economic growth, and no

advances in renewable energy. By 2100, under this

scenario, temperatures are expected to rise between 28C

and 5.48C (IPCC 2007). The A2 scenario is currently

considered very plausible, given the increase in anthro-

pogenic carbon emissions due to global economic

growth (van der Werf et al. 2009).

Projected VPD under the A2 scenario, HadCM3

model, was obtained through a combination of temper-

ature and relative humidity data, which were download-

ed from the WCRP (World Climate Research

Programme), CMIP3 (Coupled Model Intercomparison

Project), Multi-Model Data Base (ESG 2009). In order

to correct the mismatch between climate projections and

observed climate in the Amazon, we used the same

methodology of Malhi et al. (2009); i.e., we calculated a

ratio between HadCM3model’s VPDmonthly data from

2006 to 2050 and the ones from 2000 to 2005, and then

we applied this ratio to our VPD monthly 2000–2005

grid data to represent VPD time series from 2006 to 2050.

In addition, we used the results of the SimAmazonia

model under the BAU scenario to add the effects of

deforestation and road expansion on the Amazon fire

regime. The BAU scenario assumes that deforestation

rates will increase in the future due to the combination

of paving a series of highways across the Amazon and

lax environmental law enforcement (Soares-Filho et al.

2006).

With the Hadley Centre model and SimAmazonia

data, we established three scenarios: (1) climate change,

FIG. 2. Risk of fire given biophysical and anthropogenic variables for 2004. For anthropogenic risk, the values 0 and 1 indicate,
respectively, minimum and maximum risks. The highways are represented by: (a) BR-163 (Cuiabá-Santarém), (b) BR-319 in Acre,
and (c) BR-230 (Transamazon Highway).
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deforestation, and new paved roads; (2) only climate

change; and (3) only deforestation and new paved roads,

and then compared the fire regimes under each modeled

scenario with the current climate and land-use condi-

tions by computing the mean annual number of hot

pixels from 2010 to 2050 in quadrats of 50 3 50 km.

Estimating committed carbon emissions

from deforestation and forest fire

We calculated committed carbon emissions

(Fearnside 1997) from deforestation by superimposing

simulated deforested cells on a map of forest biomass

(Saatchi et al. 2007), and assuming that carbon content

is 50% of wood biomass (Houghton et al. 2001) and that

85% of the carbon contained in trees is released to the

atmosphere through deforestation (Houghton et al.

2000). However, hot pixel distribution does not provide

a direct estimate of burned forest area that can be used

to calculate emissions from forest fires. In order to do

this, we compared the number of hot pixels within the

Amazon forest with the extent of forest areas that

actually burned in the Brazilian Amazon in 2005 (Lima

et al. 2009) to derive a ratio between hot pixel density

and burned forest area. Then, we calculated the total

number of hot pixels in each simulation year that fell

within the forest and applied the resulting hot pixel/

burned forest ratio to infer the total burned forest area

per forest carbon biomass class of the map provided by

Saatchi et al. (2007). Carbon emissions from burned

pastures and other land uses were not considered.

Finally, we estimated committed carbon emission from

forest fires using Eq. 6, according to Alencar et al.

(2006):

K ¼ 0:5k
X

i

AiBi ð6Þ

where K is the total committed carbon emissions from

forest fires (in grams), assuming that half of tree biomass

killed by fire will be ultimately released to the

atmosphere through decomposition (Fearnside 1997),

k is tree mortality (percentage of biomass killed by fire),

Ai is the burned forest area (hectares) per biomass class,

and Bi is the biomass density per class i (grams per

hectare). Tree mortality rate may vary from 10% to 50%
depending on fire intensity and the state of the forest

(Alencar et al. 2006). For tree mortality (k), we assumed

conservative values of 10%–20% and added uncertainty

bounds of 20% to take into account errors in biomass

measurement for both deforestation and fire emission

estimates (Chave et al. 2004). Thus, while our calcula-

FIG. 3. Weights of Evidence (W þ) graphs for the following variables: (a) distance to deforested areas and Cerrado, (b) distance
to forest, (c) elevation, (d) distance to roads, (e) distance to towns, and (f ) land zoning (NP, non-protected; MA, military area; SU,
sustainable use; SP, strict protection; and IL, indigenous land). Positive values indicate association with fire events, and negative
values repulsion.
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tions may underestimate carbon emissions from forest

fires, they do not account for forest regrowth that occurs

following a fire (Alencar et al. 2006).

RESULTS

Fig. 2 shows fire risk for 2004 given the selected set of

biophysical and land-use variables. The probability map

indicates a strong inhibitory effect of protected areas

and indigenous lands on hot pixel distribution, as

already pointed out by Nepstad et al. (2006a).

Conversely, hot pixels closely follow deforestation and

major roads, such as the BR-163 (Cuiabá-Santarém), the

BR-319 (Manaus-Porto Velho), BR-364 in Acre, and

BR-230 (Transamazon Highway) (Fig. 2), demonstrat-

ing the strong association of fire with forest clearing and

pasture maintenance practices.

Fig. 3 depicts the spatial function for each of these

factors. Positive weights of evidence for forest near

deforested areas highlight the major effect of forest

fragmentation in facilitating forest fire (Alencar et al.

2004). In accordance with previous studies (Laurance et

al. 2001, Cardoso et al. 2003), proximity to roads is

FIG. 4. Monthly climatic fire risk for 2004. For climatic fire risk, the values 0 and 1 indicate, respectively, minimum and
maximum risks.
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another high risk factor; forests located within an eight-

km border of roads are highly vulnerable to fire.

Distance to town centers showed a similar effect,

although with lower absolute values. There is a negative

association between hot pixels and elevation up to 70 m,

probably related to flood plains and wetlands. From 70

m to 690 m, the chance of fire tends to increase, as land

becomes terra firme (non-flooded land), then from 700

m upwards, this tendency reverses again. Notably, the

protected area and indigenous land network greatly

controls the spatial distribution of hot pixels, showing

negative weights of evidence; the weights of evidence

exhibit the lowest values for indigenous lands and

military areas.

In addition, seasonal climatic patterns across the

Amazon control the risk for fire (Fig. 4). In the

beginning of the year, the dry season north of the

equator increases fire risk in that region. As the year

unfolds, the high-probability zone moves southward and

expands until it reaches a maximum in August. In

FIG. 5. Monthly integrated fire risk for 2004. For integrated fire risk, the values 0 and 1 indicate, respectively, minimum and
maximum risks.
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October, at the onset of the rainy season in the southern

hemisphere, this zone moves toward the northeast,

confining itself again to the north of the Amazon by

the end of the calendar year. This pattern is repeated in

annual cycles with the high-risk zone becoming larger

and more persistent in years of severe drought. A cross-

tabulation of observed vs. predicted hot pixels from the

monthly logistic regressions (Table 1) show that VPD

can better predict fire risk during the dry-season months

and in February and March, which showed especially

high accuracy scores.

The combined map of fire risk follows the same

temporal pattern as the climatic risk map with greater

specificity added by anthropogenic risk factors, such as

the presence of roads or protected areas (Fig. 5).

Presence of roads enhances the risk of fire only if

weather conditions are favorable. On the other hand,

risk of fire is always higher near deforested areas and the

inhibitory effect of protected areas becomes more

conspicuous as dry weather conditions persist.

Assessment of the monthly fire probability maps yielded

ROC fitness values .85% for all months from 2002 to

2005, thus demonstrating their likelihood in revealing

the high-risk zones for fire. This prediction is more

accurate from February to June, in contrast to the

period from October to December.

With respect to the simulation of hot pixels, although

spatial dependence was incorporated into the model, the

observed hot pixels are still more clustered than the

simulated ones in all months (Fig. 6). Nevertheless, the

agreement between the two maps, as measured by the

fuzzy map comparison achieved a match of 60%–70% in

September within a window size of 11 by 11 cells

(resolution of 22 3 22 km). Again, the driest months of

the Southern hemisphere (June to September), and

February and March, showed the highest degree of

agreement between observed and simulated hot pixels,

whereas the model performed more poorly from

October to January.

In terms of quantity, the number of simulated hot

pixels follows the same monthly temporal distribution as

the observed ones (Fig. 7), showing a maximum annual

deviation of 15%. As 2003 data were used to calibrate

the model, this year presented the lowest level of

deviance between observed and simulated hot pixels.

In general, the model tends to overestimate the quantity

of hot pixel cells in August, September, and October,

whereas it underestimates the quantity in the other

months. In this regard, our model could be fine-tuned by

adopting different parameter coefficients for each

month. However, this procedure would make the model

less generalized. Moreover, the model’s ability to

simulate the abnormally high density of hot pixels in

the southwestern Amazon in 2005, in close association

with the widespread fires of that particular year, lends

support to its applicability for fire prediction (Fig. 8).

The graph of Fig. 8 shows that, from 2002 to 2004, the

number of simulated hot pixels closely matched ob-

served ones, with peaks occurring in September. The

same pattern was obtained for 2005, with high frequency

peaks occurring in August and September.

The simulations of future fire regimes to 2050 revealed

two main findings: Climate change alone may spread fire

activity into the northwestern Amazon, reaching the

highly moist forests that are currently resistant to fire

(Fig. 9), and the 120% simulated increase in the number

of hot pixels outside protected areas under the combined

scenario of climate change and deforestation suggests

that fire occurrence in those areas may double by

midcentury (Fig. 10).

Fig. 9d indicates that forests in the northwestern

Amazon may become susceptible to fire only as a result

FIG. 6. Kernel density for (a) observed hot pixels and (b) simulated hot pixels for August 2004. Observed hot pixels appear
more clustered than the simulated ones.
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of climate change. In turn, Fig. 9b and c show that,

although the highest percentage of fires remains along

the arc of deforestation, there will be a substantial
increase in number of fires along the highways planned

for paving (especially along the Transamazon Highway

and the BR-319) and in the agricultural zones of Brazil
and Bolivia, where forest fires may become even more

widespread.

Regarding predicted change in annual fire occurrence
between 2010 and 2050 (Fig. 10), 19% increase in

number of hot pixels outside protected areas can be

attributed to deforestation and road expansion, while
climate alone accounts for a 12% increase (Table 5).

However, the synergy between climate change and
deforestation may increase the number of hot pixels

outside protected areas by 49% during this period.

Additionally, a scenario of A2 global warming and
uncurbed deforestation may increase by half fire

occurrence in the Amazon by 2050 (Table 5), and in

years of extreme drought, fire occurrence in the Amazon
may double outside protected areas (Fig. 10). Under this

combined scenario, committed emissions from forest fire
and deforestation may amount to 21 6 4 Pg of carbon

by 2050.

DISCUSSION

In this study, we developed a probabilistic approach

for modeling fire occurrence in the Amazon. It is
important to note that the majority of simulated hot

pixels do not represent understory fires (Nepstad et al.
1999a), but slash-and-burn, forest clearing, or pasture

maintenance practices. These activities, however, can

spark major wildfires that expand into the forest for
several kilometers, such as the fires that burned in the

state of Acre in 2005 (Aragão et al. 2007). As such, we

anticipate that the model presented here will serve as an

essential component for modeling ignition sources in a

more complex fire ignition/propagation model. More

detailed land-use maps, which include not only forest

and deforested classes, but also differentiate between

ranching and crop farming and between large properties

and small landholders, will increase the accuracy of fire

prediction, given that fire is highly associated with land

management practices within a specific set of land-use

activities (Alencar et al. 2006). For example, wildfires

can diminish in regions with a greater concentration of

agro-industrial annual crop production (D. Nepstad,

unpublished data). In addition, increasing the density of

the regional meteorological station grid will allow for

improved model performance at finer spatial resolu-

tions. However, at this stage, there is no need to increase

the model resolution, since validation showed that

model only attains a spatial fitness of 60% to 70% as

FIG. 7. Time series graphs of observed and simulated hot pixels for (a) 2002, (b) 2003, (c) 2004, and (d) 2005.

FIG. 8. Time series graphs of observed and simulated hot
pixels for the state of Acre, Brazil. These results demonstrated
the model ability in simulating the correct number of hot pixels
under abnormal climate conditions.

RAFAELLA ALMEIDA SILVESTRINI ET AL.1584 Ecological Applications
Vol. 21, No. 5



spatial resolution decreases beyond 20 3 20 km.

Nevertheless, with respect to providing support to

regional fire-prevention programs, this spatial radius is

readily accessible by local fire brigades (e.g., Aliança da

Terra; information available online).7 Moreover, due to

the way that cells are stochastically selected by the

model, the number of simulated hot pixel cells becomes

highly dependent on the map cell resolution. As we

double model resolution, we need to increase the

sampling factor used to prune hot pixel cells in the

simulation process by a power of 2.

The present model represents a step toward a

thorough fire ignition-propagation model. In contrast

to the coarse-resolution approach of land surface–

climate models (e.g., Gordon et al. 2000, Kucharik et

al. 2000, Delire et al. 2004), this type of model needs a

finer scale (,500 m or less spatial resolution) to be able

to incorporate terrain features, such as land-use barriers,

slopes, and river channels, as well as local prevailing

wind directions. In addition, a fire propagation model

must include fuel load dynamics in order to simulate fire

FIG. 9. (a) Average number of hot pixels per 503 50 km quadrat under current climate and land-use conditions and difference
in number of hot pixels by 2050 in relation to the current conditions for the scenarios: (b) IPCC’s A2 climate scenario and business-
as-usual (BAU) deforestation, (c) only BAU deforestation, and (d) only A2 climate scenario.

7 hwww.aliancadaterra.org.bri
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spread and duration in different environments and

weather conditions, as well as to incorporate feedbacks

between forest disturbance events, such as logging and

recurrent fires. In this respect, field fire experiments

conducted in the Xingu headwaters in the Southern

Amazon have demonstrated that leaf litter consists of

the main fuel load for understory fires; after a fire, the

chances of additional fires in the same location in the

subsequent two years increase; however, in the third

year, fire spread is constrained by insufficient fuel loads

(Balch et al. 2008).

In general, fine-scale versions of fire models adopt a

process-based approach (e.g., Rothermel 1972, Albini

1996, Butler et al. 2004, Cruz et al. 2005, 2006), which

requires the calibration of numerous parameters that

describe the physics of fire, such as wind profile, energy

transfer, fuel conditions, topography, and flame depth

and height. However, the design of such a model that

accounts for the diversity of Amazon landscapes could

become an insurmountable task due to the lack of

calibrated equations and data for modeling the physics

of fire in tropical environments. Instead, a more

FIG. 10. Percentage increase in number of hot pixels outside protected areas in relation to current climate and land cover
conditions.

TABLE 5. Comparison of the main results from modeled scenarios.

Output NoDefor_NoCC Defor_NoCC NoDefor_CC Defor_CC

Annual mean values for 2010–2050 period

Number of hot pixel cells within
the forest

148 238 118 016 149 936 135 106

Estimated burned forest area
(km2)

22 236 17 702 22 490 20 266

Predicted deforestation (km2)� � � � 43 564 � � � 43 564
Carbon emissions from fire (Pg) 0.031 6 0.012 0.023 6 0.009 0.034 6 0.014 0.026 6 0.010

Accumulated values for 2010–2050 period

Increase in hot pixel cells outside
PAs from constant scenario (%)

� � � 19 12 49

Carbon emissions from fire (Pg) 1.2 6 0.5 0.9 6 0.4 1.4 6 0.5 1.0 6 0.4
Carbon emissions from
deforestation (Pg)

� � � 19.9 6 4.0 � � � 19.9 6 4.0

Total emissions 1.2 6 0.5 20.8 6 4.3 1.4 6 0.5 20.9 6 4.4

Annual mean values for 2040–2050 period

Increase in hot pixel cells from
current conditions (%)�

� � � 13 25 49

Notes: Abbreviations are: NoDefor_NoCC, no deforestation and no climate change (current climate and land-use conditions);
Defor_CC, deforestation, new paved roads, and climate change; NoDefor_CC, only climate change; Defor_NoCC, only
deforestation and new paved roads; PAs, protected areas. Note that absolute values of hot pixels, burned forest, and fire emissions
are reduced in scenarios in which deforestation takes place due to a constant decrease in size of the remaining forest. Ellipses
indicate that the statistic is not applicable to the scenario result. Uncertainty bounds consist of the difference between the maximum
emission value minus the minimum from mortality rates that we used, multiplied by 1.2 to account for biomass estimate errors.
Thus, the error is plus or minus half of this interval. See Model development for a detailed explanation of the error estimate.

� Soares-Filho et al. (2006).
� Current climate and land-use conditions.

RAFAELLA ALMEIDA SILVESTRINI ET AL.1586 Ecological Applications
Vol. 21, No. 5



straightforward approach consists of adopting a prob-

abilistic framework similar to the one presented here to

model the relationship between the state of the forest

and fire behavior. Because this approach is data driven,

it can easily incorporate new data from field experi-

ments, as well as take advantage of heuristic calibration

methods, such as genetic algorithms (Koza 1992) and

neural networks (Haykin 1999), which are becoming

increasingly user-friendly (e.g., Soares-Filho et al.

2010b). Moreover, fine-scale, process-based fire models

when coupled to carbon fluxes models, such as

CARLUC (Hirsch et al. 2004), could improve estimates

of carbon emissions from forest fires, whose uncertainty

bounds still remain large. These models incorporate the

effects of climate seasonality on the vegetation phenol-

ogy (Xiao et al. 2005, 2006, Huete et al. 2006) and

thereby simulate post-fire regeneration, fuel load build-

up, and thus forest flammability, while keeping track of

carbon fluxes between forest pools and from the forest

to the atmosphere due to a fire event.

Therefore, our approach to modeling fire occurrence

was to develop a model that could perform well for the

entire Amazon in response to land-use and climate

seasonality, as well as interannual variability. In

comparison to previous models of fire for the Amazon,

our model is the first to be thoroughly validated and to

include the inhibitory effect of protected areas. We

expect that forthcoming availability of monthly basin-

wide maps of forest fire scars will allow us to refine the

current version of the model.

CONCLUSION

Climate change combined with continued deforesta-

tion and the paving of roads may greatly degrade the

Amazon forest, not only by increasing fire occurrence,

but also by contributing to the spread of fire into the

highly moist forests of northwestern Amazon, which are

currently resistant to fire. In particular, forest fires may

increase substantially across southern and southwestern

Amazon, especially along the highways slated for paving

and in the agricultural zones of Brazil and Bolivia.

Committed emissions from Amazon forest fires current-

ly average 0.03 6 0.01 Pg of carbon per year. Climate

change alone could increase this range of emissions by

25% after 2040, thus having strong implications for the

carbon balance of the Amazon forest even if deforesta-

tion ends (Nepstad et al. 2009). However, the synergy

between climate change and deforestation may further

aggravate the impact of fire on the Amazon forest

ecosystems, while exacerbating global warming. Under

the A2 climate scenario and uncurbed deforestation, a

total of 21 6 4 of the 86 6 17 Pg of carbon contained in

the Amazon forests (Saatchi et al. 2007) would be

released to atmosphere by 2050. Even so, our predic-

tions may be conservative since our model does not

incorporate feedbacks between vegetation and climate

(Botta and Foley 2002, Oyama and Nobre 2003, Li et al.

2006, Salazar et al. 2007), nor does it account for an

increase in frequency of drought years due to El-Niño

events (Cândido et al. 2007).

In this respect, climate model experiments predict a

substitution of a large portion of the Amazon forest for

savanna-like ecosystems by the end of the 21st century in

response to global warming (Cox et al. 2000, 2004, Botta

and Foley 2002, Oyama and Nobre 2003). In addition,

expanding global demands for agricultural products and

biofuels (Nepstad et al. 2006a, 2008) together with

infrastructure investments in the Amazon (Carvalho et

al. 2001) may push the agricultural frontier and the

timber industry faster and further into the core of the

Amazon region (Soares-Filho et al. 2006, Nepstad et al.

2008, Merry et al. 2009). As a result, positive feedbacks

in the forest fire regime due to deforestation, logging and

climate change may drive a rapid process of forest

degradation that could lead the Amazon ecosystem into

a cycle of impoverishment (Nepstad et al. 2008). There is

still a need to develop simulations that include these

synergistic effects of land-use change and fire on the

climate–vegetation balance. Therefore, the present

model represents a step toward an integrated model

that aims to assess the likelihood of a near-term forest

dieback tipping point due to the complex interactions

between deforestation, logging, fire, and climate change

in the Amazon.

Here we showed that continued BAU deforestation

may increase fire occurrence by 19% outside protected

areas over the next four decades, while climate change

alone may account for a 12% increase. In turn, the

combination of climate change and deforestation may

boost fire occurrence outside protected areas by half

during this period. Hence, our modeling results confirm

the synergy between the two Ds of REDD (Reducing

Emissions from Deforestation and Forest Degradation

in Developing Countries). The loss of forest carbon to

the atmosphere through fire represents a threat to the

‘‘permanence’’ of reductions in carbon emissions from

deforestation and forest degradation through REDD

programs. REDD will not compensate nations that

reduce emissions from forest fire, but will penalize those

nations whose reductions in emissions from deforesta-

tion are reversed through forest fire (Stickler et al. 2009).

Comprehensive conservation strategies for the Amazon,

therefore, require careful consideration of the interac-

tions between climate change, deforestation, and fire.
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