GRIDS_1.0 process
A JavaTM package for processing 2D square cell raster Digital Elevation Model data
Centre for Computational Geography (CCG)

School of Geography, University of Leeds

Working Paper

February, 2005
Andy Turner

A.G.D.Turner@leeds.ac.uk

1.
Introduction

This is the second of a planned set of working papers detailing GRIDS_1.0 - software written in JavaTM 2 that is geared for the analysis of geographic raster data. GRIDS_1.0 supports processing of very large heterogeneous two-dimensional (2D) square celled raster data, grids, that ordinarily would not fit in the limited fast access memory of a computer regardless of the data structure used.

GRIDS_1.0 is open source and available under the GNU Lesser General Purpose Licence. It was released via the following URL in February 2005:

http://www.geog.leeds.ac.uk/people/a.turner/src/java/grids

This paper details the GRIDS_1.0 process package. The package contains three classes, two of which extend a generally useful set of basic grid processing methods. One of the extended classes contains methods for generating Geographically Weighted Statistics that are generally useful, and the other contains methods that are only likely to be useful for processing Digital Elevation Model DEM grids.

Those interested in developing and using GRIDS_1.0 are encouraged to get in touch.
2.
The Grid2DSquareCellProcessor
This class is extended by the Grid2DSquareCellProcessorDEM and the Grid2DSquareCellProcessorGWS classes. Itself it is an extension of an ErrorHandler class.

ral e basic unit in a grid can be thought of as a cell - a value at a given location. Cells are arranged in rows and columns (a lattice), aligning with orthogonal axes x and y. Each cell value is a Java primitive, not an Object. The two supported values for a cell are an int and a double.

A grid is made up of chunks of cells arranged in rows and columns. Each chunk is a discrete rectangular block of cells arranged again in a rows and columns aligning with orthogonal axes. The organisation of cells into chunks offers flexibility. A grid can be comprised of many different types of chunk, so each chunk can be stored using a different data structure. Chunking in this way enables a simple means of caching data via object serialization. What this means is that: If fast access memory runs out while carrying out an operation, then processing is not aborted, but stalled while an attempt is made to transfer data (that is not in use) to another store (usually disc space). The fast access memory that the data was occupying can then be re-used. If the data that was cached is needed in a subsequent operation, then it can be reloaded as a preliminary into the fast access memory again using a fixed retrieval mechanism, (in doing so, if necessary, other data could be cached).

There main advantages of the chunk structure are that:

· each chunk can be stored optimally using any of a number of data structures; and,

· each chunk can be readily cached and re-loaded as needs be.

Memory handling has been implemented by writing code to deal with any java.lang.OutOfMemoryError encountered at runtime in an appropriate way .

To recap, there are two almost identical types of grid one type deal with cell values that are of an int type, the other deal with cell values that are of a double type. Now, the classes for handling these both extend an abstract class which provides inner classes for CellID and ChunkID which can be used to uniquely identify a cell and a chunk, and which provides general referencing and geometry methods relevant to any grid. This abstract class also acts as an interface controlling what methods extended classes must implement.

3.
Different Types of Chunk in GRIDS_1.0

There are two sets of chunk that are almost identical, one for int type cells and the other for double type cells. In each set there are the following types of chunk:

· 64CellMap

· 2DArray

· JAI

· Map

· RAF

Each type of chunk employs a different data structure. Each data structure may offer advantages in specific circumstances. Essentially individual cell values in each chunk can be retrieved and set to new values. Additionally each chunk either contains or has access to methods which provide information about the data content of the chunk.

Arguably, the most sophisticated data structure is that of a 64CellMap, but this is also limited to chunks with at most 64 cells. All other chunks can contain many more cells, but there are limits. The theoretical limit is that no chunk may contain more than java.lang.Integer.MAX_VALUE (2147483647) number of rows or columns. For a RAF chunk it is slightly less, for the case of double value cells it is 8 times less, and for int value cells it is 4 times less. The reason for this is that values in a RAF chunk are stored in a java.io.RandomAccessFile and should be accessible via the seek(long position) method of that class where; the java long primitive argument position is the byte offset in the java.io.File storing the values. (A java double is stored in 8 bytes and a java int is stored in 4 bytes.)
Although chunks can be reasonably large, they are intended to be relatively small compared to the overall grid. It may also be likely advantageous to specifying some binary round number (e.g. 64, 128, 256, 512, 1024, etc...) for the number of rows and columns in each chunk that a grid will be made of.

The chunk implementations in GRIDS_1.0 are lightweight. Each chunk stores almost nothing except the data or a reference to its location. So, an individual chunk does not store any statistics about its data, such as the mean value, it only has methods it can call for calculating such information.

There are advantages to be gained in using different structures to store chunks and retrieve information about their values. Different grids of data can be stored optimally in different ways depending on what is required. Optimisation involves:

· retrieving values and information about the grid as fast as possible;

· changing the underlying data as fast as possible; and,

· using as little memory as possible.

There is an optimal configuration for any data given its use, but pre-calculating this is non-trivial. Generally a compromise is best and some experience of what is best in different circumstances can come into play. It is rare to have 2D square celled data for which there is a data structure that simultaneously optimises everything. Usually one data structure will offer the fastest access to specific types of information about its values, and another will offer the most memory efficient storage. Switching from one structure to the next is somewhat expensive, and keeping track of changes in more than one structure is also expensive.

The default chunks are of the 2DArray type. The default is specified in a factory class, which are detailed in Section 4.

The remainder of this section describes each type of chunk in turn.

3.1
64CellMap Chunks
The chunk 64CellMap class imports part of the GNU Trove library (GNU, 2004) to store data in a fast, lightweight implementation of the java.util Collections API (Java, 2005). Each different value in a 64CellMap chunk has a key entry in a HashMap. Each key is mapped to a long value which in this instance codes the locations of the 64 cells that have this particular value. Each key and each value are unique.

There are 264 long values and these give all the possible combinations of a boolean mapping to the 64 cells in the chunk. The bit mapping of the long value is what codes the locations to which the key applies.

So, for chunks that contain a single cell value there is a single mapping in the HashMap and for chunks with 64 different cell values there are 64 mappings in the HashMap. Iterating over (going through) the keys in the HashMap is necessary to get and set cell values, so generally this works faster for smaller numbers of mappings.

The speed of data retrieval is uncertain, since it may be the first or the last key presented by an iterator that is the one being sought.

A mapping of keys (cell values) and values (cell identifiers) is a general way of storing grid data. It is very efficient in terms of memory use where a default value can be set, and if there are only a small number of non-default mappings in the chunk (compared to the number of cells in the chunk). Such maps also offer the means to generating some statistics about a chunk very efficiently. In particular, the diversity (number of different values) can be calculated readily and the mode may also be fast to return. For other types of statistics the efficiency is more constrained by the number of mappings than it is by the generic speed of retrieving an individual cell value.

3.2
2DArray Chunks

2DArray chunks are effectively arrays of arrays organised in rows and columns. They are primitive and most appropriate to have if the diversity of values in a chunk is large.

3.3
JAI Chunks

JAI chunks are based on the Java Advance Imaging Tiled Image javax.media.jai.TiledImage (JAI, 2001)

3.4
Map Chunks

Map chunks are very similar to 64cellmap chunks except that they are not limited to 64 cells. Rather than using a primitive-primitive Trove HashMap, these use a primitive-Object Trove HashMap. The Object is either a ChunkCellID as defined in the abstract chunk class, or a collection of these.

3.5
RAF Chunks

RAF chunks can be fast access memory efficient for large data chunks. The data is stored on disc and is accessed via a java.io.RandomAccessFile. These chunks have had little use since the caching and error handling functionality has been implemented.

4.
Factory and Iterator classes

Every type of grid and chunk has an associated factory class for constructing instances of it and an iterator class for iterating over the cell values in them.

5.
Statistics classes

Every grid is adorned with one of two types of statistics object. With one type, a number of statistics about the grid are initialised as the grid is constructed and these fields are kept up to date as the underlying data cell values are modified. The computation involved is wasted if the statistics are not going to be used, but if they are, then it can be a help to have them readily available. The following statistics fields may be kept up to date:

· nonNoDataValueCountBigInteger – number of cells with non noDataValues.
· sumBigDecimal - the sum of all non noDataValues as a BigDecimal.
· minBigDecimal - the minimum of all non noDataValues as a BigDecimal.

· minCountBigInteger - the number of min values as a BigInteger.

· maxBigDecimal - the maximum of all non noDataValues as a BigDecimal.

6.
Further Work

At this stage development might best be split:

· GRIDS_1.X to continue with bug fixes and enhancements based on the GRIDS_1.0 core; and,

· GRIDS_2.0 to be a new branch devoted to the development and application of an enhanced core.

A specification for GRIDS_2.0 is perhaps the first step in this line of development. It may be that this can be a small step such as; support for BigDecimal type cell values. It may be though that a more fundamental change is wanted, such as a change to 3D.

Prior to any of this, alternative development strategies should be considered. So far GRIDS has been developed by an individual, but in the future it might be developed by a team and even be integrated as part of another software development effort such as GeoTools (refs). If GRIDS is to be developed by multiple users, a common repository for the code and the implementation of a full suite of unit tests are desirable.

Much work is necessary to make Grids robust, flexible, user friendly and adhere to the standards specified by the Open Geospatial Consortium (OGC, 2005).

Acknowledgements

The European Commission has supported this work under the following contracts:

IST-1999-10536 (The SPIN!-project)

EVK2-CT-2000-00085 (MedAction)

EVK2-CT-2001-00109 (DESERTLINKS)

EVK1-CT2002-00112 (tempQsim)
Thank you James MacGill and Ian Turton for encouraging me to code Java.

Thank you Mike Kirkby and Brian Irvine for your support during the DesertLinks and tempQsim projects.
