
GRIDS_1.0 core

A JavaTM package for processing numeric 2D square cell
raster data

CCG, School of Geography, University of Leeds

Working Paper Version 0.4

December, 2005

Andy Turner

A.G.D.Turner@leeds.ac.uk

1. Introduction

This is the first of a planned set of publications about GRIDS_1.0(beta) - software
written in JavaTM 2 (Java) based on the Java 1.4.2 Stadard Development Kit -
that is geared for the analysis of geographic raster data. The software is geared for
processing very large heterogeneous two-dimensional (2D) square celled raster data sets
(grids) that ordinarily would not fit in available fast access memory of computers
regardless of the data structure used. This is Version 0.4 of this document and is the first
to be put online.

GRIDS_1.0(beta) is open source and was first released in beta form under the GNU
Lesser General Purpose Licence via the following URL in March 2005:

http://www.geog.leeds.ac.uk/people/a.turner/src/java/grids

This paper details the core package. The other packages that currently make up the
software are:

 exchange
 process
 utilities

The exchange package contains classes with methods relevant for importing and
exporting data. The process package contains classes of methods for manipulating,
combining and generating new grids. The utilities package contains classes that are
used in the other packages and that are likely to be of more general use. The core
package is dependent on the utilities package. Some classes of the core package
import classes from third party software. All third party software is distributed with the
GRIDS_1.0(beta) software bundle and details are provided in the relevant sections
below.

To date the software has been a closed development produced by a single individual
supporting a very small user community. This has allowed for the code to be refactored

radically during development, but is not sustainable in the long term. Others are
encouraged to get involved in a more open user/developer community to work top
produce a more robust offering with many tests put in place so that functionality and
capabilities can be preserved. There are several ways forward. Perhaps the best option is
to integrate this software into a more extensive library adhering to more rigid syntax,
testing and documentation requirements.

Section 2 outlines the basic data grid data framework. Section 3 describes memory
handling. Section 4 provides some details on data structures employed. Section 5 is to
describe factory and iterator classes for building and populating the data structures and
going through the data values respectively. Section 6 details the use of statitics objects
which are attached to data structures for providing fast and easy access to summary
information. Section 7 is for detailing further work.

2. The Basic Grid Arrangement

The basic unit of a grid is a cell. Cells are arranged in rows and columns, aligning with
orthogonal axes x and y. Each cell can be thought of as being square shaped, with a value
at centre. Really cells are little more than a value at a specific point location with abstract
boundaries. Currently each cell has a value stored as a Java primitive, either an int
or a double.

A grid is made up of chunks of cells arranged in rows and columns. Chunks are ‘sub raster
blocks’ (Mineter, 1998), i.e. discrete rectangular block of cells. Chunks like cells are
arranged in rows and columns aligning with the orthogonal x and y axes. The organisation
of cells into chunks offers flexibility. A grid can be comprised of many different types of
chunk, so each chunk can be stored using a different data structure. Also, chunking enables
a simple means of caching and swapping data.

Chunks are serializable (as are grids) because they are constructed from classes that
implement the java.io.Serializable interface. This means that they can readily be
swapped via ObjectOutputStreams and ObjectInputStreams. Operationally, this
feature is geared for a specific type of memory management. Many computers have a
fast access memory as well as a larger slower type of memory commonly referred to as
disc. Computation is fastest if the data being integrated is loaded in the fast access
memory. It is slower if this data first needs loading, and is slower still if storage in the
fast access memory needs organising to enable the data to be loaded. If the fast access
memory becomes full whilst a calculation is being performed, some memory
management has to be done to save overwriting data or program that is required.
Usually an attempt must be made to suspend the calculation while an attempt is made to
swap or transfer data (that is not in use) to another store. If the data that was swapped is
needed in a subsequent calculation, then attempts can be made to load it into the fast
access memory again. Most operating systems perform some form of swapping operation.
Within the memory limits of the Java Virtual Machine GRIDS_1.0(beta)explicitly
handles the swapping of data to attempt to provide sufficient memory for calculations to
be made.

There is a computational cost of transferring data from one store to another. The more
transfers that are necessary, the higher the cost will be. Additionally there are transfer
bottlenecks which mean that time can be saved by loading or swapping in advance so

that the data in the fast access memory is that required for the upcoming calculations.
The part of a grid that is loaded in the fast access memory of a computer is called the
cache.

The main advantages of the chunk structure are that:
 potentially, each chunk can be stored optimally using any of a number of data

structures; and,
 each chunk can be readily swapped between different memory stores of a

computer.

To recap, there are two almost identical types of grid one type deal with cell values that are
of an int type, the other deal with cell values that are of a double type. The classes
for handling these both extend an abstract class Grid2DSquareCellAbstract
which provides inner classes for CellID and ChunkID which can be used to uniquely
identify a cell and a chunk, and which provides general referencing and geometry methods
relevant to all extended classes. The abstract class also acts as an interface controlling
what methods extended classes must implement.

3. Memory Handling

Memory handling has been implemented by essentially wrapping each method body in a
try{}catch(java.lang.OutOfMemoryError e){} statement block. If memory
handling is enabled and a java.lang.OutOfMemoryError is thrown during the
execution of the code in the try{} block, then an attempt is made to clear some data
from the cache and then the method is called again in a recursive manner. If the method
is set not to do OutOfMemoryError handling the caught error is simply thrown.
Clearing data from the cache involves three steps. Firstly, a small amount of pre-
initialised memory is cleared. This freed memory is enough to allow for an
ObjectOutputStream to be constructed to write data out to a file. Secondly, data is
written to file via the constructed ObjectOutputStream. Finally, a small amount of
memory is initialised for future use. Figure 3.1 is a Java code block of a method
illustrating the memory handling.

Figure 3.1 Java code block illustrating memory handling enclosure

Since an OutOfMemoryError is only encountered at runtime developing
comprehensive testing suites for this code is challenging.

4. Different Types of Chunk

There are two sets or broad types of chunk that are almost identical, one for int type
cells and the other for double type cells. For each set there are the following types of
chunk:

 64CellMap
 2DArray
 JAI
 Map
 RAF

Each type of chunk employs a data structure to store data and is distinguished by the way
in which it stores and retrieves data values from the structure. The various data
structures offer specific advantages in specific circumstances. Essentially, individual cell
values in each chunk can be retrieved and set to new values. Additionally, each chunk
either contains or has access to methods which can provide information about the data
content of the chunk.

The number of cells each type of chunk can have is limited. For some types of chunk the
limit is based on the number of cells, or the number of rows and columns; for others, the
limit is based on the diversity of cell values. Although chunks may address a large number
of cell values, they are best to be of a size that allows an entire row to be loadable into the
fast access memory of computers intended to use them. Chunks are intended to be
relatively small compared to the overall grid, in that, it is generally best to have; more
rows and columns of chunks in the grid, than rows and columns of cells in each chunk. It may
also be likely advantageous to specifying some binary round number (e.g. 64, 128, 256,
512, 1024, etc...) for the number of rows and columns of cells in each chunk.

/**
 * This method does not exist in the grids_1.0 package. It is an illustration of
 * how OutOfMemoryErrors are handled. The function of the method is to execute a
 * chain of methods based on args.
 * @param args An Object of arguments to be used in this method.
 * @param handleOutOfMemoryError If true then OutOfMemoryErrors are caught in
 * this method then swaping and cache clearing operations are called prior to
 * retrying. If false then OutOfMemoryErrors are caught and thrown.
 */
public void method0(Object args, boolean handleOutOfMemoryError) {
 try {
 // Calculate result1;
 Object result1 = method1(handleOutOfMemoryError);
 // Calculate result1;
 method2(method1(args, handleOutOfMemoryError), handleOutOfMemoryError);
 } catch (OutOfMemoryError oome0) {
 if (handleOutOfMemoryError) {
 clearMemoryReserve();
 clearChunk(swapChunk());
 initMemoryReserve();
 return method0(args, handleOutOfMemoryError);
 } else {
 throw oome0;
 }
 }
}

Chunks are lightweight in that they hold almost nothing except the cell values (or in one
case, a reference to them). Individual chunks do not store any statistics (e.g. the mean) of
the cell values it has, yet, chunks contain methods for calculating such statistics that
override more general methods.

There are advantages to be gained in using different structures to store chunks and
retrieve information about their cell values. Different grids of data can be stored optimally
in different ways depending on what is required. Optimisation involves:

 retrieving cell values, information about the grid and regions of it as fast as
possible;

 changing/setting cell values as fast as possible; and,
 working within memory limitations, (attempting to use as little memory, but as

high a proportion of fast access memory as possible).

For any data set (grid), given a memory limit and sequence of operations to perform;
there may exist an optimal configuration with respect to the number of rows and columns
in each chunk, and the types of each chunk.1 Chancing on this configuration is highly
unlikely, but it is equally unlikely that a complete optimisation is necessary.

Grids can be modified by changing chunks from one type to another. Where one chunk
type will be more efficient, both in terms of memory storage and individual cell value
retrieval, having this chunk type is highly desirable, but, the construction of it comes at a
cost.

In Grids_1.0(beta), grid constructor methods do not automatically switch to more
optimal chunk types during grid construction, although this could be a good time to do it.
What happens is that a chunk factory, that produces a particular type of chunk, is passed to
the grid constructor and it is these types of chunk that are constructed.

The number of rows and columns each chunk will be comprised of can be specified, as can
what type a chunk factory to use (there are defaults). It is unlikely for any chunk type to
simultaneously be optimal for memory and computational speed for a given set of
operations. Usually one data structure will offer the fastest access to specific types of
information about its values, and another will offer the most memory efficient storage.
Switching from one structure to the next is somewhat expensive, and keeping track of
changes in more than one structure is also expensive.

The remainder of this section describes each type of chunk in turn.

4.1 64CellMap Chunks

This somewhat sophisticated data structure is limited to chunks with at most 64 cells. The
advantages of this data structure are potentially huge and require further testing as a
storage model for other kinds of 2D and three dimensional (3D) spatial data. For this,
grids handling Java primitives of a boolean type are wanted.

The chunk 64CellMap class imports part of the GNU Trove library (GNU, 2004) to
store data in a fast, lightweight implementation of the java.util Collections API

1 Potentially more than one configuration will perform the processing in an equal amount of time.

(Java, 2005)2. Each different value in a 64CellMap chunk has a key entry in a HashMap.
Each key is mapped to a long value which in this instance codes the locations of the 64
cells that have this particular value. Each key and each value are unique.

There are 264 long values and these give all the possible combinations of a boolean
mapping to the 64 cells in the chunk. The bit mapping of the long value is what codes the
locations to which the key applies.

So, for chunks that contain a single cell value there is a single mapping in the HashMap and
for chunks with 64 different cell values there are 64 mappings in the HashMap. Iterating
over (going through) the keys in the HashMap is necessary to get and set cell values, so
generally this works faster, the smaller the number of mappings.

The speed of data retrieval is uncertain, since it may be the first or the last key presented
by an iterator that is the one being sought.

A mapping of keys (cell values) and values (cell identifiers) is a general way of storing grid
data. It is very efficient in terms of memory use where a default value can be set, and if
there are only a small number of non-default mappings in the chunk (compared to the
number of cells in the chunk). Such maps also offer the means to generating some
statistics about a chunk very efficiently. In particular, the diversity (number of different
values) can be calculated readily and the mode (the mean of the most commonly
occuring values) is also tends to be able to be calculated quickly. For other types of
statistics the efficiency is more constrained by the number of mappings than it is by the
generic speed of retrieving an individual cell value.

4.2 2DArray Chunks

2DArray chunks are effectively arrays of arrays organised in rows and columns. They are
primitive arrays of either double[][] or int[][] types. This chunk type is generally
the most efficient if the diversity of values in a chunk is large. The 2D arrays are indexed
via primitive int values, so setting and retrieving values is straightforward. The
arrays can be initialised with java.util.Arrays.fill(array, value) where
array is the array to be filled and value is the value to fill it with.

4.3 JAI Chunks

JAI chunks uses classes from the Java Advance Imaging API (JAI, 2001). The data is
stored in a javax.media.jai.TiledImage and can be readily visualised or written to
an image file. To use this kind of chunk the Java Advance Imaging software is required.

2 Since the release of Java 1.5 the utility of the GNU Trove library is questionable due to the new
features of the language allowing for autoboxing/unboxing.

4.4 Map Chunks

Map chunks are very similar to 64cellmap chunks except that they are not limited to 64
cells. Rather than using a primitive-primitive Trove HashMap, these use a primitive-
Object Trove HashMap. The Object (map value) is either a ChunkCellID as defined in
the abstract chunk class, or a collection of them.

4.5 RAF Chunks

RAF chunks store data on disc accessed via a java.io.RandomAccessFile. These
chunks are little used since the caching/swapping and OutOfMemoryError handling
functionality has been implemented.

5. Factory and Iterator classes

Every type of grid and chunk has an associated factory class for constructing instances of
it and an iterator class for iterating over the cell values in them.

6. Statistics classes

Every grid is adorned with one of two types of statistics object. With one type, a number
of statistics about the grid are initialised as the grid is constructed and these fields are
kept up to date as the underlying data cell values are modified. The computation
involved is wasted if the statistics are not going to be used, but if they are, then time may
be saved by having them readily available. The following statistics fields may be kept up
to date:

 nonNoDataValueCountBigInteger – number of cells with non noDataValues.
 sumBigDecimal - the sum of all non noDataValues as a BigDecimal.
 minBigDecimal - the minimum of all non noDataValues as a BigDecimal.
 minCountBigInteger - the number of min values as a BigInteger.
 maxBigDecimal - the maximum of all non noDataValues as a BigDecimal.

7. Further Work

At this stage development might best be split:
 GRIDS_1.X to continue with bug fixes and enhancements based on the

GRIDS_1.0 core; and,
 GRIDS_2.0 to be a new branch devoted to the development and application of

an enhanced core.

A specification for GRIDS_2.0 is perhaps the first step in this line of development. It
may be that the first step is support for boolean, BigDecimal, and other Object
type cell values.

It may also be that more fundamental and abstract improvements are wanted, such as;
support for three-dimensional grids, or support for raster models based on triangular
equidistant points of measurements.

Perhaps prior to any of this, open source development strategies should be considered
and some model for development implemented. GRIDS_1.0(beta) has been developed
by an individual, but this is not sustainable in the long term. To maximise the utility and
use of the code it is probably best developed by a team. Maybe this is best achieved by
integrating the code into other ongoing software development efforts, such as GeoTools
(GeoTools, 2005). For the code to be developed by multiple users, a common repository
for the source and the implementation of a full suite of unit tests are wanted. Much
other work is necessary to make GRIDS_1.0 robust, flexible and user friendly, and to
implement the standards specified by the Open Geospatial Consortium (OGC, 2005).

Work is needed to evaluate the merits of different types of chunk. The 64CellMap
chunk is described as being very sophisticated, but does it offer clear advantages for any
data sets? It may be that this data structure is best suited to binary (boolean or two-
values) grids. Indeed for this the mapping can be thought of as a possible substitute for
a vector storage model. One number effectively storing the pattern of a points, lines or
regions.

Acknowledgements

The European Commission supported this work under the following contracts:
IST-1999-10536 (The SPIN!-project)
EVK2-CT-2000-00085 (MedAction)
EVK2-CT-2001-00109 (DESERTLINKS)
EVK1-CT2002-00112 (tempQsim)

The ESRC supported this work under the following contract:
RES-149-25-0034 (MoSeS)

Thanks to James MacGill and Ian Turton for encouraging me to code Java. Thanks also
to all the academics and student that have encouraged me to develop this software.
Without your help, encouragement and support, this work would not be published.

References

JAI (2005) Java Advanced Imaging API. Accessed on 2nd February 2005 via
http://java.sun.com/products/java-media/jai/

Java (2005) JavaTM 2 Platform Standard Edition 5.0 API Specification. Accessed on 2nd

February 2005 via http://java.sun.com/j2se/1.5.0/docs/api/

Mineter M. J. (1998) Partitioning Raster Data. Chapter 10 of Healey R. G., Dowers S.,
Gittings B.M., Mineter M.J. (eds.) Parallel Processing Algorithms for GIS.
Taylor & Francis.

OGC (2005) The Open Geospatial Consortium. Accessed on 2nd February 2005 via
http://www.opengeospatial.org/

GeoTools (2005) GeoTools open source Java GIS toolkit. Accessed on 2nd February 2005 via
http://www.geotools.org/

GNU (2004) GNU Trove: High performance collections for Java. Accessed on 5th November
2004 via http://trove4j.sourceforge.net/

