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Abstract

The paper reviews the Disaggregative Spatial Interpolation Problem (DSIP) which concerns how best to transform spatial variable values for a specific source geography into values for a different target geography which has a much higher general level of spatial resolution.  The DSIP is a distinct form of Spatial Interpolation Problem (SIP) because of the significant additional difficulty which arises because the disparity in spatial scale between source and target data zones is extreme.  Various contemporary Areal Interpolation Methods (AIMs) are described and criticised in relation to the DSIP gradually introducing the need for a more integrating “intelligent” approach.  Intelligent Interpolation Methods (IIMs) find and use patterns in geographical data at and between different scales are outlined and some experiments IIMs based on Neural Networks (NNs) designed to disaggregate population are reported.
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1.
Introduction

A major unresolved problem in GIS concerns how best to transform values of a spatial variable for a specific set of source zones into values of the same variable for a set of target zones which are significantly smaller.  This is an extreme variant of the cross-area estimation or Spatial Interpolation Problem (SIP) and it is termed here the Disaggregative Spatial Interpolation Problem (DSIP).  The DSIP is extreme and distinctly problematic due to the significant disparity between the size of the source and target data zones.  It is a common problem in environmental change research where a major hindrance has been the absence of socio-economic data at a level of spatial detail suitable to be linked with outputs from other physical-climatic based environmental models; see Clarke and Rhind (1991).  As it happens, the recognition of the DSIP as a distinct extreme type of SIP was spurned by research on the European Union (EU) Mediterranean Desertification and Land Use (MEDALUS) project which seeks to address issues of land use change and land degradation in the Mediterranean climate region of the EU.

The development of a Synoptic Prediction System (SPS) for MEDALUS III invoked a need to develop a general way of linking various types of environmental datasets that were spatially inconsistent via interpolation to a common spatial framework.  The SPS was originally designed to integrate socio-economic, physical and climatic environmental change data at a spatial resolution of approximately 1-decimal-minute (circa 1 km2 ) to produce a set of scenario based agricultural land-use forecasts and land degradation risk indicators; see Openshaw and Turner (1998a, ).  Various physical and climatic based environmental model output were available at this resolution, but there was almost a complete lack of available socio-economic data.  The best available socio-economic data for the EU was Eurostat data at a resolution called NUTS3.  NUTS3 zones are irregularly shaped, vary in size considerably from country to country and have an approximate area of 3,000 km2 on average, (Figure 1 shows a map of population density at NUTS3 resolution for the EU).  For MEDALUS what was desired was some way of disaggregating this data to produce estimates at a resolution of approximately 1 km2.

To briefly summarise, the DSIP is common in environmental change research, especially that which attempts to integrate human and physical models of geographical processes.  It is common because spatial data, in particular socio-economic data, are often only made available at low levels of spatial resolution due to financial, census and copyright restrictions.  The following section reviews some existing Areal Interpolation Methods (AIMs).  Section 3 describes Intelligent Interpolation Methods (IIMs) which employ Neural Networks (NNs).  Section 4 compares IIMs against other AIMs in relation to population density interpolation experiments based in the UK.  Finally, Section 5 describes ongoing and future ideas for research of the DSIP.

2.
Review of existing methods for spatial interpolation

2.1
Introducing spatial interpolation methods for surface modelling

To transform socio-economic data for zones of arbitrary size and shape into a gridded structure some form of spatial interpolation method is required.  Areal interpolation is defined as the process of generating values of a spatial variable for a target set of areal units (target zones) from an incompatible or non-nesting source set of areal units (source zones); see Goodchild and Liam (1980).  In the DSIP the target zones are small regular gridded cells which can be viewed as a surface where the “height” of the surface represents the value of the attribute within each cell.  For instance, gridded population data created by areal interpolation can be thought of as a population density surface where the height of the surface at a particular point is determined by the estimated population within that particular grid cell.  Various Areal Interpolation Methods (AIMs) are potentially relevant to the surface modelling of socio-economic data; see Goodchild et al (1993) and more recently Hunting Technical Services Ltd (1998) for a review.  The existing AIMs applicable to the creation of socio-economic data surfaces include some form of areal weighting, Tobler’s pycnophylactic method, Bracken and Martin’s Surpop method, and smart interpolation.  Each of these is described in the next few subsections and related to the DSIP.

2.2
Areal Weighting

Areal weighting involves proportionally distributing the source zone values based on the area of overlap between each source zone and each target zone.  The method is summarised by the following algorithm:

Step 1:

Calculate the area of source zones.

Step 2:

Divide source zone values of the spatial variable to be interpolated by the area of source zones. (This calculates the density of the spatial variable.)

Step 3:

Intersect source and target zone areas and calculate the area of each intersection.

Step 4:

Multiply intersected zone areas calculate in Step 3 by the density of the spatial variable calculated in Step 2.

Step 5:

Sum the products from Step 4 for each target zone.

Interpolating population counts thus involves calculating source zone population densities by dividing population count by the area of each source zone.  Next, source and target data zones would be intersected and the density value would be converted back into a count by muliplying source zone population density by the area of intersect in each target zone.  The interpolated population counts for each target zone are then calculated by summing the products or counts of each intersected zone contained within the target zone.

The expected uncertainty in areal weighted interpolation estimates is high if the interpolated variable is densely clustered and it increases dramatically as the disparity between source and target zones becomes greater.  The pycnophylactic method described below is a basic way to modify the interpolation estimates by tweeking neighbouring target values so they are more similar which in effect represents some of the spatial autocorrelation or clustering of the interpolated variable at a certain scale.

2.3
Pycnophylactic interpolation

Tobler's pycnophylactic or mass preserving method is an extension of simple areal weighting which essentially calculates target zone values based on the weighted distance from the centre of neighbouring source zones using an iterative approximation routine; see (Tobler 1979).  This AIM is currently being used by the NCGIA Global Demography Project to create a global population density surfaces; see Tobler et al (1995).  The three main benefits of this AIM are that:

1. It ensures the interpolated surface is smooth with no sudden change in attribute values at target zone boundaries;

2. the summed value of the attribute within each source zone is consistant with source zone totals, and;

3. it is a straightforward computational task.

The assumption underlying this AIM is based on a general autocorrelation rule of geography which suggests that variable densities in neighbouring areas tend to be similar.  Although population is known to be clustered in this way, there are a few probelms with this basic assumption in relation to the DSIP, in particular:

1. High values in one source zone pull values in a neighbouring lower valued source zones to the boundary.  When interpolating population this AIM effectively "pulls" most of the population of a sparsely populated area towards the boundary with an adjacent densely populated area and this may be unreasonable.

2. The method takes no account of localised heterogeneity.

3. It is not really intelligent as it makes no use of additional geographical information which could be used to help refine the estimates, the only intelligence is a general rule of geography which is globally applied.

4. For a demographic application it can be criticised as being conceptually weak in that there is a lack of alternative hypotheses about the processes generating or associated with population density; see Goodchild et al (1993).

5. Also, an empirical study by the authors has shown that whereas the resulting maps look good, they estimates are little better in a statistical sense than what could be produced using a method that assumed an equal spread of population.

All in all, this AIM is not applicable to the DSIP even if extra constraints are incorporated to reduce some of the problems described above.  The method is quite a useful way to represent “urban pull”, the smoothing function is useful, but perhaps the best use of this AIM is to produce general scale maps.  Population density values are spatially autocorrelated or clustered at a range of different scales and this method only takes account of clustering at the target scales.  In order to tackle the DSIP information regarding nature of clustering of the variable being interpolated is required, this is especially true where the spatial variable to be interpolated is highly clustered within the range of scales between source and target zones. Still the main criticism of this method is that it fails to use other available geographical information.  The Martin and Bracken Surpop AIM described below has been specifically developed for population interpolation and uses additional geographical information in the form of postcode density information to weight interpolation estimates.

2.4.
Martin and Bracken’s Surpop Method

This AIM has been used to transform data for 150,000 census Enumeration Districts (EDs) in the UK using additional postcode information into a 200 meter by 200 metre raster surface of population called Surpop; see Bracken and Martin (1995).  Surpop is a regular grid of kernel smoothed population estimates produced by weighting and summing ED population counts based on postcode density information.  Surpop is attractive both because of its regular gridded structure and because it was generated using additional local information to add intelligence to the interpolation process.  The Surpop method works best when differences in scale between source and target areas are small and clearly can only work if additional postcodes are available and correlated with the variable of interest.  Because it is restricted to using postcode density information, it can be argued that it is not really a generally applicable method which is capable of handling the massive scale disaggregation involved in the DSIP.  The “smart” AIM described makes use of a number of geographical variables which are used to guide the interpolation.

2.6
Smart Interpolation

Willmott and Matsuura (1995) first used the term smart interpolation when they interpolated temperature and precipitation values using elevation and exposure data as a basis for weighting the interpolated estimates.  The “smart” AIM has also been used to create population density maps using readily available digital map information regarding the location and size of urban settlements and other physical features related to population.  Deichmann and Eklundh (1991) and UNEP (1992) describe the creation of a population map of Africa for the UNEP Global Atlas of Desertification at a 2.5 DM x 2.5 DM resolution.  Sweitzer and Langaas (1994) describes the creation of a population map of the Baltic States at a 1 km2 resolution, and Viedhuizen et al (1995) describes the creation of a population map of Europe at a 10 degree resolution.  The “smart” AIM basically involves creating surfaces of potential or expectancy by weighting and summing values of specific indicator variables; see Deichmann (1996).  Indicator variables that are used are generally known to either be positively or negatively correlated with the variable being interpolated.  Both the nature and relative strength of the relationship is assumed to be known and are weighted accordingly.  The various weighted indicator surfaces are then combined to create a single potential or weighting surface which is used to calculate the interpolated estimates. Relevant geographical information for population density interpolation includes the size and location of settlements, the location of parks and factors like the distance and density of roads and rivers.  Known uninhabited areas like lakes and parks are assigned very low weights whereas locations close to physical features that attract population , such as roads and rivers are given larger weights.  The resulting probability surface created by weighting indicator variable values can be constrained using known source zone populations and used to caluclated interpolated estimates of population.

As the disparity between source and target zones increases the utility of this AIM increases in comparison with the other AIMs described above provided there is sufficient relevant geographical information to create the potential surfaces.  The “smart” AIM can be criticised because it relies heavily on subjective assessments of weighting factors and on a subjective selection of population potential measures.  The idea of using available surrogate information to make potential estimate of population distribution is a useful feature which can be developed.  The next section describes how the smart AIM can be extended by using NN to make it more intelligent, less subjective and genearlly more capable at solving the DSIP.

3.
Intelligent Interpolation using Neural Networks

3.1
Basic Methodology

One way in which to develop the smart AIM described above is to broaden the range of input predictor variables thought to be spatially correlated in some way to the variable of interest and then train Neural Networks (NNs) to recognise the correlation pattern between the inputs predictors and the variable of interest.  Once trained to classify population based on input predictors in a relatively objective way such a NN can be applied to produce relatively assumption free interpolated estimates.  This AIM is called an Intelligent Interpolation Method (IIM) because of the far greater flexibility and power that NNs have over more convential non-fuzzy approaches; see Openshaw and Openshaw (1997).  

NNs are universal approximators capable of learning to represent virtually any function no matter how complex or discontinuous.  They can learn to cope with noisy data and thus can learn to represent complex non-linear geographical data patterns.  The primary disadvantage of using NNs is that they are still a ‘black box’ technology in that they cannot readily explain what they have learned and so cannot communicate with human users so that we can check the logic behind the mapping.  This means that whereas NNs are useful as a mapping function they are sometimes regarded unhelpful black magic.  Other problems with using NNs are that; a choice of what kind of network and how complex it should be has to be made, they are computationally expensive, they require a large amount of training and validation data, and it is hard to predict how long they will take to train to represent the general patterns that exist.  Basically, the major problems with NN technology are that it is misunderstood and a large experimental effort is required if they are to be used to generalise geographical forms and processes.

In 1997 it was believed that the benefits of using NNs far outweighed the risks and the technology was thought to offer the basis for a set of Intelligent Interpolation Methods (IIMs).  The IIMs outline below can be regarded as extensions of the “smart” AIM which uses objectively determined parameters instead of subjectively weighted global parameters to create a potential weighting surface.

3.2
The Mark 1 Intelligent Interpolation Model (IIM/1)

The original Intelligent Interpolation Model (IIM/1) was developed to interpolate NUTS3 population data using NNs to make estimates of population for 1 km2 grid cells in the UK.  This involved firstly obtaining some generally available digital map data, mapping the data and selecting relatively complete and consistently defined themes which were then used to create population indicator sufaces.  Next, standard back propagating feedforward multi-layer perceptron type NNs were trained to learn to represent patterns between population indicator surfaces and population density using some target data values based on Surpop.  Linear, log-linear and various NN models were created which attempted to minimise the sum of squared errors between the 25 predictor variables generated and the target population for random selections of approximately half the cells in the UK.  These models were then applied to estimate the population of the remaining 1 km2 grid-squares in the UK and the various different predictions were mapped and compared.  The algorithm below summarises IIM/1 after which there is a brief description of the input data and a analysis of the results:

Step 1:

Express the digital boundary data for the NUTS3 regions in terms of a 1 km2 grid so that the locations of each grid cell in terms of NUTS3 regions is known.

Step 2:

Generate population estimates for the desired framework of 1 km2 output cells by aggregating Surpop 200 metre x 200 metre grid cell data by a factor of 5.

Step 3:

Acquire geographical data, map it and select widely available and relatively consistant digital map layers to use as a basis for estimating population density.

Step 4:

Generate location, density and distance grid layers of selected geographical features.

Step 5:

Select randomly stratified training data sets.

Step 6:

Define a selection of different NN configurations and train NNs on each training data set to learn to represent the relationship between the population indicators and population.

Step 7:

Apply the trained NNs to calculate population density for the UK constraining the estimates so that the total populations within each NUTS3 region match the observed 1991 totals.

Step 8: 

Compare the error of the NN models against other linear models and other AIMs.

A proprietary Geographical Information System (GIS) was used to process Bartholemew’s 1:1,000,000 digital map data to create 1 km2 grids whose values represent the location, distance or density of data selections.  Location grids contain values of 1 or 0 depending upon whether the cell contains a geographical feature or specific set of spatial data values.  Distance grid values are distances to selected geographical features or specific location values.  Density grid values are approximate measures of density of a geographical feature.  In the set of experiments reported below for IIM/1 the only density surface used was the density of roads which was created by summing the length of road inside each 1 km2 cell.  Tobler’s pycnophylactic surface and RIVM’s smart population outputs were also used as inputs to the linear, log-linear and NN models. Table 1 list all the predictor variables used.

The results of interpolating the population of the UK from NUTS3 to 1 km2 are summarised in Table 2.  IIM/1 performed better than all other interpolation methods and mapped surfaces were fairly convincing.  The best performing one hidden layer NN had 30 hidden layer neurons mapping to a single output neuron NN(25:30:1) and performed almost as well as the best performing network with two hidden layers each with 10 neurons NN(25:10:10:1).  More complex networks took much longer to train and did not perform quite as well.  An analysis  of error maps suggested that the major problem with IIM/1 was that it did not cope very well with the clustered nature of population and produced overly smooth population surfaces.  

The main deficiencies of IIM/1 were that the GIS pre-processing was simplistic, the experiments took a long time to perform, and despite a huge effort the generalisation properties were not thoroughly tested.  IIM/1 was attractive because it used widely available and relatively cheep digital map data, it created synthetic data with the copyright belonging to the data creator and the results demonstrated that NNs could be used to improve the “smart” AIM.  At this stage it was thought that the major deficiencies of IIM/1 could be addressed by improved data availability, and that a breakthrough in performance might be achieved by finding better ways of representing digital map information. Further experiments were performed to retrain IIM/1 so that it would estimate demographic population breakdowns using the synthetic population estimates for each cell to constrain the breakdowns.  In retrospect these experiments were a distraction since the errors in the population estimates were sill too large to sensibly use them to constrain further demographic breakdowns.  When attention refocussed on producing better population density surfaces a further search for other relevant geographical data was needed.

3.3
The Mark 2 Intelligent Interpolation Model (IIM/2)

Experiments with IIM/1 demonstrated the benefits of using NNs.  It now became imperitive to apply IIMs to create EU population density surfaces for use in MEDALUS III.  Prior to creating these surfaces a further search for relatively complete and consistently defined spatial data was performed.  It was felt that more data might be now be available to produce better population indicators. In due course, the Digital Chart of the World (DCW), the World City Population Database (WCPD), and the Defence Meteorological Satellite Program Operational Linescan System Night-time Lights Frequency Data (NLF) were added to the database. The DCW is a thematic map database similar to the Bartholomew’s 1:1,000,000 data. Investigations of the data confirmed that a few potentially useful map layers exist.  The WCPD is a point data set representing the location of cities.  Attached to each point are details about the size and population of each city.  Both the DCW and the WCPD can be downloaded via the WWW.  The NLF is a raster data surface in which high values occur in cells where night-time lights are frequently observed from a satellite orbiting earth.  The main conditions of use for the NLF data was that prior to disseminating outputs from a model which used the data as an input permission had to be obtained from the data provider.  Various commercial data bases relavent to the interpolation of population were discovered in the geocyberspace and it was thought that many of these would probably contain useful information which could be used to make better EU population surfaces.  Every commercial organisation approached for such data could not be convinced to supply the data at a cheap enough price for it to be acquired for this research.  The commercial data sets were not forthcoming despite explaining that the cost of these data was beyond the available project funds, despite arguing that the research would probably add value to the data if it was any good by showing a use for it, and despite offering to supply copies of the resulting population density surfaces without restrictions of use.  The frustrating lack of useful available data meant that better ways to use the data that was available had to be devised.  Unfortunately, no suitable small area population data (like Surpop) became available for other areas in the EU and so it was necessary to base the EU population estimates soley on patterns found in the UK.

It was necessary to change projection system as extending the UK 1 km2 square grid across the EU results in significant areal distortion caused by the curvature of the earth.  The data was converted into a geographical projection system based on lines of latitude and longitude which roughly compromises distance, area and direction distortion across the EU.  To cope with the change in projection system the analysis resolution was altered to from a 1 km2 resolution to a 1 Decimal Minute (DM) resolution which is approximately.  All the analysis was now performed on the source data projected into this spatial framework.

The two major developments in IIM/2 are described below in subsequent sections.  The first describes a more sophisticated form of GIS preprocessing which involves a method to create more useful density grids of geographical features by combining density information from a range of spatial scales.  The second describes a simple way to effectively bootstrap the NN to help it converge and produce better results.

3.3.1
New GIS pre-processing

It can be argued that the GIS processing in IIM/1 was simplistic and failed to make the fullest use of the sources of available data, and it can be further argued that some of the input variables were not very appropriate population indicators.  The source data was mapped and query again using ArcView.  Some of the population indicators used in IIM/1 created from Bartholomew data layers were not recreated for the whole of the EU as there was obvious incompleteness in coverage or inconsistancies in definition across the EU.  As a result the need to create more population indicators from the consistant available thematic map layers via geogeneralisation intensified.  Geogeneralisation can be defined as the creation of maps which provide information about either the location of, distance to, direction to, or density of a selected set of geographical data.  The geographical data need not necessarily be sets of points, lines or areas, as they could also be a selected set of spatial variable values.  Geogeneralisations regarding the direction to a geographic feature are not very relevant to the interpolation of population density, but locaton distance and density geogenraliasations are.  Most inputs in IIM/1 were distance layers and it was suggested that perhaps a lot more could be done to create useful geographical information regarding the density of geographical features.

So, geographical data can be summarised or generalised in various different ways and these are called geogeneralisations.  Consider a line data set where each line represents part of the road network.  This can simply be rasterised into a 1 DM grid to create a location grid indicating the cells that either contain road or do not.  It is also relatively easy to create a grid where the value in each cell represents for example the distance from the centre of that cell to the nearest section of road.  In IIM/1 a road density layer was calculated by summing the length of road in each cell and assigning this as the value to each cell in the grid.  Clearly only the cells that contain road would acquire a non-zero value.  It is possible to further select cells above a certain density and those within a specified range of selected values to create further generalisations.  For example all cells with above average density can be selected and used to create a location layer.  From a single geographical theme it is possible to create an emense number of different generalised surfaces.  This is not to say that all of these inputs will be useful or are sensible to use for a given modelling task, but some might reasonably be expected to represent useful information.  For example, consider railway density and its relationship to railway stations and population.  It could be argued that the density of railway is of little use for population mapping and nor is the distance to the nearest section of railway, but the distance to one of the more dense areas of railway might be useful.  The logic behind this is that people live near trainstations not train track and trainstations usually occur where the railway netork density is high.  So from two different geogeneralisation operations it is possible to create a useful population indicator.

Density layers as those described above only provide density information at the analysis resolution and are prone to spatial bias according to what cell boundaries are used.  Often it might be that the density of roads at a higher spatial resolution provides additional useful information which can be used to guide the interpolation.  To investigate density measures further, maps of the density of road at different spatial resolutions were created.  Sure enough the maps suggested that the whole set of density grids with a range of resolutions appeared to provide more information than any single density layer.  It was thought the next step would be to combine the density at these different resolutions to produce density grids providing information about the density of a selection of geographical objects across a range of scales.  By combining the data in the right way it was felt that the additional information in the individual density layers could be added to produce a single surface.  Combining the density lasyers would also reduce the number of inputs that NN model were expected to make use of.  For each geographical data layer the appropriate range of scales over which to create the density information depends heavily on the nature of the data itself and how much information is provided by more simple location, distance and density grids.

To create density information for geographical points is relatively easy.  ArcView has a kernel density algorithm for point data which effectively calculates the density over a range of spatial scales.  The user only needs to select the range of the kernel and whether to use an attribute variable attatched to the points to weight the kernel density.  Figure (***) shows the effect of increasing the kernel extent on weighted kernel density surfaces generated from the World City Population Database.  As there is no similar functionality to create density information from lines or areas in either ArcView or ArcInfo, a new density routine was developed.

A proxy for the density of a selection of geographical features can be calculated by rasterising the data at a high level of resolution to create a location grid then aggregating the values to the required resolution.  In doing this aggregation there are ways to reduce the amount of spatial bias introduced.  Suppose a set of geographical features were were rasterised at an initial  resolution where the cell width and height were half those at the required resolution.  There are four ways to aggregate the values to the next level of resolution each starting in a different corner of the square raster.  The maximum value in any of these aggregation cells will be 4 and a value of 4 would indicate that all smaller cells at the previous resolution contained the location of the geographical feature of interest.  Suppose all 4 different aggregations are created to produce 4 spatially inconsistent grids.  The inconsistency means that the values cannot simply be added together, first they must be disaggregated to the previous resolution to produce 4 spatially consistant grids.  Each dissagregated grid cell would be assigned the value in the larger grid and each spatially consistent grid cell might contain different values.  These 4 spatially consistent grids can be added together to produce a single grid with a maximum value of 16, where a value of 16 would indicate that that cell and all surrounding cells in the initial raster contained the geogrphical features of interest.  (At this stage it is worth considering a renormalisation by dividing all grid values by 4.) Reaggregating to the next level of resolution without renormalising would produce a grid with a maximum value of 64.  (Again renormalising can be considered at this stage by division by 4.)  The grid is now a density grid at twice the initial resolution.  The process of aggregating, dissagregating and reaggregating can continue to produce other density grids.  An ArcInfo Macro Language program which performs the generalisation is displayed in appendix***, the algorithm below summarises the procedure:

Step 1  Rasterise data at an initial resolution and reclass cell values 

Step 2  Aggregate by factor of 2 from all corners of the raster summing values 

Step 3  Disaggregate the aggregate grids to the resolution prior to aggregating in Step 2 and add together 

Step 4  Aggregate by factor of 2 

Step 5  Repeat steps 2 to 4 until data at desired resolution. 

The algorithm was applied to square rasters but would probably work as well or better with triangular or hexagonal rasters.  The resolution of the initial rasterisation is the major factor effecting the data error or uncertainty propogation in the resulting grids.  If the initial resolution is too high errors in the original geographical data will be propogated, if it is more appropriate many of the errors in the original geographical data may get hidden, and if it is too coarse then useful information might not get used.  Given sufficient data quality information it is likely that a suitable compromise can be found.

Density grids for a range of resolutions can be combined to produce density grids at a specific resolution in a variety of ways.  A sensible way to do this is to weight and summing the density grids based on the level of aggregation.  For IIM/2 various combined density grids were created.  Mapping the geogeneralised density surfaces for things like road and urban areas and comparing the maps data against population maps suggested that these surfaces were likely to be extremely helpful.

GEM could have been used to measure which input variables explained population density the most.  This could form a basis for automating the selection of input data layers for the NN modelling.

The target data used in IIM/1 was a spatially biased aggregate grid of the original Surpop 200x200 meter populaton surface.  For IIM/2 it was necessary to reproject the surface into a geographical projection and aggregate to a 1 DM resolution introducing the minimum level of spatial bias. To do this, the original Surpop data was converted into a polygon coverage which was projected into a geographical projection.  The smallest polygon area was calculated, then a second target polygon coverage representing a grid was generated in the same projection system with areas less than the smallest projected surpop polygon and equal to the next smallest area that would aggregate neatly to a 1DM resolution.  The values of the target polygons were then calulcated using the areal weighted interpolation method outlined in Section 2.2 and the polygon coverage was transformed into a grid.  Using the density geogeneralisation routine the transformed grid was aggregated to a resolution of 1 DM and the surface was mapped.  Normalisation was used so that higher level aggregations attained the same number of people.

There are other ways to geogeneralise geographical point, line and area data for spatial analytical purposes, including; smoothing and clumping.  Smoothing is where the values of a variable are averaged out across a wider area.  Clumping is the opposite and can be done by squaring cell values and renormalising.  Depending on the nature of the particular DSIP analysis task only some geogeneralisations of a selected set of geographical data might be useful.

Geogeneralising point, line and area data to produce location, distance, density or direction grids should be done in projections which respectively minimise the spatial bias in the resulting grids.  For example, when producing distance grids it would be best to transform the geographical input data into a distance preserving projection calculate the distances and reproject the results into the analysis projection in which all the data neatly overlays in a common spatial framework.

3.3.2
NN bootstrap - a type of adaptive net

IIM/1 used population surfaces generated from other population intepolation methods.  Once an estimated population surface for the EU had been created it seemed reasonable to use this or some geogeneralisation of it as an input into subsequent models.  Suppose the best current result was used as an input to a NN, then a bootstrap could be applied in the following way:

Step 1
Train the network until it converges

Step 2
Generate the resulting estimated population surface

Step 3
Calculate a grid of averages of this surface and the previous surface

Step 4
Substitute the average surface in place of the previous result

Step 5
Repeat Steps 1-4

It is not necessary to use an average measure in step 3 any number of different geogeneralisations could be used to bootstrap the predictions.  For example, the areas of very low population density can be formed into a location grid and used as part of the bootstrap. The bootstrap can be used to reduce the number of inputs variables used at any one time.  Having mapped the input coverages those layers which appear to be strongly positively correlated with population and those which are strongly negatively correlated with population density can be grouped together.  Using the bootstrap it is now possible to swap positive correlated variables in and out at Step 4 and keep the number of NN inputs relatively small.  Experiments were performed where a few input nodes were kept for bootstrap generalisations, a couple were used to swap positively correlated variables, a couple for negatively correlated variables and the remaining for inputs with unknown correlation with population.  Limiting the number of inputs was helpful as it reduced the number of parameters the NN model was required to estimate.

3.3.3.
Empirical Results
Bootstrap results

Split the data and predict rural urban and zero population density seperately and combine the results.

Fuzzy Spatial Interpolation

A fuzzy inference based approach could help to tackle the DSIP.  Each given source zone can be divided by straight lines consistent with lines in the target zone spatial framework.


Suppose the relationship between the predictor variables and the variable to be interpolated can be described.  For example; if road network density is high then population density is high, if built-up area density is high then population density is high.  Then, for horizontal (vertical) lines dividing the source data zone the difference between above and below (left or right) indicator variables can be used as a basis for dividing the value of the variable to be interpolated.  (It might be worth examining proportional splits for other lines at a higher resolution than the required target zones and aggregating up to reduce errors.)  Having performed the fuzzy calculations for each dividing line of a spatial framework either a simple system of differencing can be used to assign values to each cell or the zone can be split into parts and the process can be repeated in an iterative fashion.  The results from fuzzy differencing can be used to incorporate geographical knowledge about indicator variable relationships with the variable to be interpolated.  The additional fuzzy model outputs can be fed into a NN model as an additional indicator variable.

4.
Conclusions and further developments

The experiments in disaggregating population density demonstrate that the IIMs developed for MEDALUS were more capable of handling the large disparity between source and target geography in the DSIP in comparison to more conventional AIMs.

IIMs are generally applicable where there is sufficient target data.

A further challenge is to develop automated Spatial Interpolation Systems (SIS) which create synthetic, non-disclosing, copyright free, increasingly high resolution grid based estimates of virtually any spatial variable.  Such a SIS could become an integral component of a geoenvironmental forecasting
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Figure 1.
A map of population density at NUTS3 resolution for the EU.

Table 1.
Variables used in IIM/1


Distance to built-up area


Location of built-up areas


Distance to forest park


Location of  forest park


Distance to wood


Location of wood


Distances to motor way


Distances to major road


Distances to other road


Distances to river


Density of road


Distance to extra large town


Distance to large town


Distance to medium sized town


Distance to small town


Height from a Digital Elevation Model


Uniform NUTS 3 population density


Tobler’s pycnophylactic population estimate


RIVM’s population estimate


NUTS 3 coverages with control totals

Table 2
Empirical Comparison of Alternative Methods


Method


Absolute 






Percentage error


Areal Interpolation

316.2


Pychnophylactic Interpolation 
276.3


Smart Interpolation

129.1


Linear Model


84.5


Log Linear Model

84.1


NN(25:30:1)


81.8


NN(25:20:5:1)


85.1


NN(25:5:5:1)


82.2


NN(25:10:10:1)

79.8


NN(25:20:20:1)

85.5

Table 3
Revised set of variables used in IIM/2

Physical data

Height above sea level (12)

Mountain density (1)

Park location (1)

Water location

Transport data

Navigable waterwaterway cost-distance (1)

Railway station cost-distance

Railway station density

Road density

Road cost-distance (1)

Airport cost-distance

Comunications network density

Town and place data

Populated place location

Built-up or urban area density

Built-up or urban area location

Distance to nearest extra large town

Large town density

Large town cost-distance

Medium sized town density

Medium sized town cost-distance

Small town density

Small town cost-distance

Population data

Uniform NUTS 3 population estimate

Tobler’s pycnophylactic surface population estimate

RIVM’s population estimate

Independent Distance Weight Interpolated city population

Other misc data

Night-time lights frequency data *********

Table 4
Performance of IIM/2

Appendix A:
AML Program for density geogeneralisation

/* -------------------------------------------------

/* Program:             adsrn.aml 

/* Author:              Andy Turner

/* Date of creation:    September 1998

/* Last modified:

Fri Sep 11 09:33:42 BST 1998

/* -------------------------------------------------

/*

/* ---------

/* Comments.

/* ---------

/* 

 /* The output resolution o_r should be specified as an integer multiple 

 /* of the input resolution i_r.

 /*

 /* Various unnecessary dummy variables are used

/*

/* ---------------

/* 1. Preparation.

/* ---------------

 &sv g [entryname [getgrid * 'select a grid']]

 &sv i_r = [response 'Initial resolution (grid cell size)']

 &sv o_r = [response 'Output resolution (grid cell size)']

 &sv XMIN = [response 'XMIN']

 &sv YMIN = [response 'YMIN']

 &sv XMAX = [response 'XMAX']

 &sv YMAX = [response 'YMAX']

 &sv ROWS = [response 'ROWS']

 &sv COLS = [response 'COLS']

 &sv t_w = [response 'Enter a name for a temporary workspace']

 grid

 /* Copy grid into temporary workspace.

  /****** /* The below copy fails if %i_r% has a decimal point in it. 

  /****** /* This is because g%i_r% is an invalid grid name. To solve

  /****** /* the problem multiply both %i_r% and %o_r% by the same 

  /****** /* factor of 10 so that there is no decimal point.

  &sv i-r = %i_r% * 10

  copy ../%g% g%i-r%

/*

/* ---------------------

/* 2. Geogeneralisation.

/* ---------------------

 &sv ite = 1

 &sv cell = %i_r%

 &do &until ( %o_r% = %i_r% )

  &sv cell_n = ( %i_r% * 2 )

  &sv BXMIN = ( %XMIN% - %cell% )

  &sv BYMIN = ( %YMIN% - %cell% )

  &sv BXMAX = ( %XMAX% - %cell% )

  &sv BYMAX = ( %YMAX% - %cell% )

  /* Aggregate grid a.

   ga%i-r% = aggregate (g%i-r%,2)

  /* Disaggregate grid a.

   setcell %cell%

   gad%i-r% = ga%i-r%    

  /* Tidy up

   kill ga%i-r%

   setcell maxof

  /* Clip grid b.

   gridclip g%i-r% g%i-r%b box %XMIN% %BYMIN% %XMAX% %BYMAX%

  /* Aggregate grid b.

   gb%i-r% = aggregate (g%i-r%b,2)

  /* Tidy up.

   kill g%i-r%b

  /* Disaggregate grid b.

   setcell %cell%

   gbd%i-r% = gb%i-r%

  /* Tidy up.

   kill gb%i-r%

  /* Sum disaggregations

   gabd%i-r% = (gad%i-r% + gbd%i-r%)

  /* Tidy up.

   kill gad%i-r%

   kill gbd%i-r%

   setcell maxof

  /* Clip grid c.

   gridclip g%i-r% g%i-r%c box %BXMIN% %BYMIN% %BXMAX% %BYMAX%

  /* Aggregate grid c.

   gc%i-r% = aggregate (g%i-r%c,2)

  /* Tidy up.

   kill g%i-r%c

  /* Disaggregate grid c.

   setcell %cell%

   gcd%i-r% = gc%i-r%

  /* Tidy up.

   kill gc%i-r%

  /* Sum disaggregations

   gabcd%i-r% = (gabd%i-r% + gcd%i-r%)

  /* Tidy up.

   kill gabd%i-r%

   kill gcd%i-r%

   setcell maxof

  /* Clip grid d.

   gridclip g%i-r% g%i-r%d box %BXMIN% %YMIN% %BXMAX% %YMAX%

  /* Aggregate grid d.

   gd%i-r% = aggregate (g%i-r%d,2)

  /* Tidy up

   kill g%i-r%d

   kill g%i-r%

  /* Disaggregate grid d.

   setcell %cell%

   gdd%i-r% = gd%i-r%

  /* Tidy up.

   kill gd%i-r%

  /* Sum disaggregations

   gs%i-r% = (gabcd%i-r% + gdd%i-r%)

  /* Tidy up.

   kill gabcd%i-r%

   kill gdd%i-r%

   setcell maxof

  /* Renormalise.

   gr%i-r% = (gs%i-r% / 4)

  /* Tidy up

   kill gs%i-r%

   gridclip gr%i-r% gn%i-r% BOX %XMIN% %YMIN% %XMAX% %YMAX%

   kill gr%i-r%

  /* Reaggregate.

   gr%i-r% = aggregate (gn%i-r%,2)

  /* Tidy up

   kill gn%i-r%

  /* Renormalise

   grr%i-r% = (gr%i-r% / 4)

   &sv ite_n = ( %ite% + 1 )

  /* Tidy up

   kill gr%i-r%

  /* Clip grid to right size

   gridclip grr%i-r% gkeep%ite% BOX %XMIN% %YMIN% %XMAX% %YMAX%

  /* Tidy up

   kill grr%i-r%

  /* Set variables for next iteration 

   &delvar BXMIN

   &delvar BYMIN

   &delvar BXMAX

   &delvar BYMAX

   &delvar cell

   &sv i-r = %i-r% * 2

   &sv cell = %cell_n%

   &delvar cell_n

   &delvar i_r

   &sv i_r = %cell%

   &sv ite_o = %ite%

   &delvar ite

   &sv ite = %ite_n%

   &delvar ite_n

   &delvar n_r

   &sv n_r = ( %ite% * %i_r% )

  /* Copy grid for next iteration

   copy gkeep%ite_o% g%i-r%

 &end

&RETURN

Appendix B: 
Data Sources

1. Bartholomew European 1 Decimal Minute data.

2. Digital Chart of the World.

3. The Defence Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) Night-time lights intensity dataset.

4. RegioMap (Eurostat) CD-ROM data.

5. Tobler's pycnophylactic (mass preserving) smooth interpolated population density surface.

6. RIVM's raw population count for geographical regions.

7. UK Census data: Surpop 200 meter total population and population seeking work surfaces of Great Britain; SAS Small Area Statistics.

8. Italian National Statistical Institute Registration total population count point data.

9. CRU temperature and precipitation data.

10. Biomass estimations from Medalus at Leeds.

11. Soils geographical database of Europe at scale 1:1,000,000 version 3.2.

12. GLOBE: Global Land One-KM Base Elevation Data version 0.1.

