A comparison of Geographically Weighted Statistics methods for Studying Change in the Spatial Distribution of Personal Injury Road Accidents over Time
Andy Turner
1
Introduction

1.1
Aims
· Apply various Geographically Weighted Statistics (GWS) to examine changes in personal injury road accident distributions over time.

· Develop understanding of what different GWS can be used to identify. In particular, gain an appreciation of the limitations of different methods.

· Demonstrate that exploratory analysis methods are capable of producing interesting results revealing change in the spatial distribution of different types of personal injury road accident data.

1.2
Source data

· Ordnance Survey Meridian Road Data (OSMRD)
Meridian is an Ordnance Survey (OS) data product customised from a variety of other OS data sets.  The data represent real world geographic objects as point and line vectors with associated attribute data. The data used here are the line vectors which represent four different types of road (Motorway, A-Road, B-Road and Minor-Road).
· Stats 19 Personal Injury Road Accident Data (SPIRAD)
Stats 19 data are held in three related data tables, one contains general records concerning individual road accidents, another concerns the casualties involved, the other concerns the vehicles involved.  Each accident is temporally referenced (by a date and time stamp) and spatially referenced with coordinate variables that give the spatial location of the accident measured to approximately the nearest 10 metres.  The spatial location and year in which each accident occurred are the key bits of data used in this work.  
1.3
Background

The locations of personal injury road accidents and the movements of road vehicles do not take place in two-dimensions although the data representations used here to approximate these are.  Two data structures commonly used for storing such two-dimensional (2D) geographical data are raster and vector.  In fact, all 2D geographical data are values attributed to individual points, lines or areas on a 2D plane defined using a projection and coordinate system.  The spatial definition of these points, lines or areas are stored as coordinate vectors except in special circumstance.  The attributed data may represent a physical feature, or it may be abstract.  In general though, the data depicts some aspect of a process interacting on or near a physical surface.
Geographical raster data are special collections of 2D geographical data for areas which are non-overlapping, regularly shaped and tessellate into a continuous surface.  The spatial definition of all these raster data can be given in a few parameters as all the individual data cells have the same size and shape and are arranged in a regular way.  Precisely the same data can often be stored in raster and vector format and converted between them without any information loss.  However, converting a single themed vector layer into a single raster layer often involves some form of generalisation.  Theoretically, multiple raster layers can store all the information stored in any vector format without losing any information loss, but this is beside the point.  In practice, the generalisation inherent in vector to raster conversion is a step towards the application of many spatial analysis methods that can readily identify interesting data characteristics, particularly spatial characteristics such as concentration.  Much geographical data is stored and analysed in raster format because this provides the necessary information more efficiently and proffers additional analytical means.  In other words, the inherent contiguity, discreteness and standardised form of raster data lends itself to analysis and visualisation. 
The most commonly shaped cells used for storing geographical raster data are equal angled triangles, quadrangles and hexagons.  Most common of all are rectangles, which are what many display devices use.  For many geographical purposes, it is not the shape of cells, or their orientation, or their properties of contiguity and centroid distribution, but their size or resolution which is of greatest importance.

Both SPIRAD and OSMRD can be rasterised in a number of ways.  At some low level of resolution, most cells of a raster are large enough so as to intersect or contain at least some road and some SPIRAD locations for the period 1992 to 2001. (This is irrespective of the origin and orientation of the raster and the shape of its cells – provided we are only dealing with cells that are over land).  In general, for higher levels of resolution - the proportion of cells that contain neither road nor SPIRAD locations in the period 1992 to 2001 is higher.  For square cells with widths of 20 metres (smaller than the widths of much road), the proportion of cells that do not contain any road is very large and the proportion of cells which do not contain any locations of personal injury road accidents in the period 1992 to 2001 is even larger.  These proportions vary spatially and intuitively one might expect that the latter is also in some way related to the density and proximity of road.

Now supposing the ten years of SPIRAD were split into five year chunks and we were to consider the Leeds and Bradford region of West Yorkshire.  Suppose further that the SPIRAD time chunks were rasterised at a 20 metre resolution for some origin and that each cell of the raster was set as the number of SPIRAD it contained.  Let us refer to the grids as 9296_grid and 9701_grid respectively.

Now, the number of non-zero cells in both the 9296_grid and the 9701_grid is small (9,303) compared with the number of all cells which are non-zero in one or other grid (54,139).  Both these counts are small given the total number of cells in the grids (6,376,875).  Because of this sparseness, it is hard to visually identify the general differences between the SPIRAD distributions at a local level.  By subtracting 9296_grid from 9701_grid it is possible to produce another grid where positive values indicate an increase in accidents between the two time periods, and negative values indicate a decrease in accidents between the two time periods.  Mapping this resulting however does not tend to reveal general changes at a local level although it can in extreme circumstances.  In general the problem is that the locations of positive and negative cells are similar.  Generally the pattern of accidents in 9296_grid and 9701_grid are very much the same and it is hard to locate where they are not without generalising.

One way of generalising is to rasterise initially at a lower level of resolution.  This would reduce the sparseness, however, it would increase the Modifiable Areal Unit Problem (Openshaw, 1984), which is avoidable and well worth avoiding.  A better way of handling the problem is to generalise by generating local statistics in a way that does not involve compromising the resolution of the raster data.
Local statistics, such as the sum (or mean) of all cells within a specific distance, can be produced at the same resolution for any grid.  A local sum (or mean) produces a smoother grid or surface where all the values are more similar, especially those that lie within each others locality.  When mapped, local statistics can reveal more general changes that were hidden in the grids from which they were generated.  Smoothing has the potential to produces grids with far fewer non-zero values especially if the grid being smoothed contains many non-zero cells.  For example, consider a local sum statistic of the grid obtained by subtracting 9296_grid from 9701_grid.  Suppose the local sum statistic is based on all cells within 20 cell widths, then the resulting smoothed grid has 30.92% of cell values that are non-zero.  Compare this with the tiny 0.99% of cells which were non-zero in the original grid.  Mapping the smoothed result (even on a lower resolution display) can reveal general change on the local level.  (This difference is illustrated in Section 2 by Figures 2.2 and 2.3.)
For some raster GWS explorations reported here, Ordnance Survey Meridian Road Data (OSMRD) were rasterised into a grid referred to here as road_grid.  This grid is coincident with the rasterised SPIRAD grids 9296_grid and 9701_grid.

Now, OSMRD is generalised road centre line data which offers a close but imperfect representation of GB road.  Each OSMRD is a line that is attributed a class defining whether it represents Motorway, A‑road, B‑road or Minor‑road.  The cells of road_grid were assigned a default value of 0, then each cell was assigned a value of 1 if the majority of it was either within 10 metres of a Minor‑road centre line, or the majority of it was within 15 metres of a B‑road centre line, or the majority of it was within 20 metres of an A-Road centre line, or the majority of it was within 30 metres of a Motorway centre line.
As with all data, SPIRAD and OSMRD are only as accurate and precise as they have been recorded and the likelihood is that they are generalised and may contain errors.  OSMRD is generalised and updated ad hoc, and furthermore, road_grid is a generalisation of OSMRD.  Although road_grid broadly identifies where roads are, cells with a value of 1 may not contain road and cells with a value of 0 may actually contain road.  For the Leeds region explored in this paper, for 1992 to 2001, 6,898 accidents (out of a total of 93,787) were recorded in cells of road_grid with a value of 0.  Some of these accidents appear to be located far away from any road_grid cells with a value of 1 whereas most are nearby.  Some of these locations can be seen in Figure 1.1.
There are various forms of data pre-processing that might be considered for cleaning the data.  However, no cleaning of SPIRAD was done for the explorations reported here. Instead, what is done is that road_grid cells that are coincident with SPIRAD grid cells with non-zero values are assigned a value of 1 regardless of the proximity to OSMRD.  A map of road_grid for a part of Leeds is shown in Figure 1.1.  The resolution of the image shown in the map is greater than that of the grid and some individual cell locations should be identifiable.
Figure 1.1
A map of road_grid for a part of Leeds

[image: image1.png]
It is worth noting, that visualising grids for the entire Leeds region at the 20 metre resolution is challenging.  Most contemporary display devices cannot display the entire grid without transformation to a lower resolution.  This additional data generalisation can obfuscate patterns in the data, especially small scale patterns.  Anyway, display generalisation is less of an issue when results are smooth as the display device transformation should affect inference little.

To recap, the main aim of the explorations reported here was about developing an appreciation of different GWS methods that can be applied to examine spatial distributions over time.  The inherent assumption for the comparison of spatial distributions is that, despite all the complexity, the aggregate exposure to risk allows a reasonable comparison of SPIRAD distributions to be made without needing to take into account other measures of the difference in environmental conditions.  In reality the environmental conditions vary to a large degree, not only from minute to minute, hour to hour, day to day, week to week, month to month, but also from year to year and so on.  Some of the variation or difference may be quantifiable, (e.g. weather conditions), and at some level, quantifications may reasonably be used to explain or map the change in the distribution of SPIRAD.  In different years there are different amounts of exposure to higher risk conditions, for instance, some years the weather is worse than others.  However, despite the large range and small scale variations in conditions, over a year, it is reasonable to think that in general exposure to risk and risk are about the same for most small areas which have observed the same personal injury road accident incidence.  For localities which have observed considerable changes in personal injury road accident incidence it is reasonable to think that this is because of a change in general exposure to risk and risk.  How to decide what is considerable can be done in various ways as it is a matter of degree and absolution, how to decide whether a change in incidence occurred ‘by chance’ or because there was a ‘real’ change in general exposure to risk and risk is far more difficult.
The next section provides more details about the various GWS methods used to examine the change in the SPIRAD distributions over time.  Section 3 presents and discusses outputs.  Section 4 concludes and sets out a research agenda.

2.
Method Details
The various GWS methods that are used here can be divided into two main sorts, raster and vector.  For vector based GWS, SPIRAD were converted into point layers.  The vector GWS approaches used are those outlined in Fotheringham et al., 2002, and those based on the Geographical Analysis Machine (GAM/K) described by Openshaw et al., 1998.  The raster based GWS were developed specifically for this research from first principles, but are based on many similar notions to those of the vector GWS.  The reason for developing the raster GWS was an idea that there could be potential benefits of treating road regions with zero SPIRAD count differently to non-road regions with zero SPIRAD count.  It should be noted that all the GWS methods are complimentary and exploratory.

All the GWS methods used here can be described as computationally intensive, it takes time and considerable computing power to get results for large areas at high levels of resolution.  Nevertheless, some analysis has to be done for reasonably diverse areas which are necessarily ‘large’ and at a high resolution in order that the results justify the points raised.  Within the report, results are presented for the Leeds Bradford region, but also for smaller areas within this to focus on particular things.
All GWS produce raster outputs.  Some are calculated for fixed localised spatial regions, (the extent of which is usually defined by some distance metric), others are calculated for ‘adaptive’ locales, where the statistics are generated for regions with boundaries defined by other metrics, for example, the smallest circular region containing a fixed numbers of SPIRAD incidence.  Regions used for geographical weighting do not have to be circular or regular, but these are what are dealt with here.  Additionally, here we deal with distance weighting that is monotonic, in other words, nearby cell values are always taken into account more than those further away.  Here, each regional weighting metric is a kernel, defined as follows:
For any value located at a distance (
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) from the centre of a kernel, the weight for that value is given by Equation 2.1.  If the Central Weight (
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) is 1, and the Weight Factor (
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) is 1, then Equation 2.1 simplifies to Equation 2.2.  Figure 2.1 shows half the cross-sectional profiles of different kernels for different weight factors for a bandwidth (
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) of 20.  In Figure 2.1, the centre of the kernel is to the left and the edge is to the right.  To imagine the kernel consider the shape obtained by the graphed line being rotated about the weight axis 
Equation 2.1
A General Formula for Kernel Weight
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Equation 2.2
A Simplified Formula for Kernel Weight
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Figure 2.1
Cross-sectional Profiles of kernels for different weight factors for a bandwidth of 20 and a Central Weight of 1
[image: image8.emf]Kernels Profiles for Different Weight Factors for Bandwidth 20
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All the results displayed in Section 3 for fixed kernels are produced using (
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).  For the adaptive kernels the bandwidth varies, though the shape of the surface is the same (with; 
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) and the volume under it is fixed in an approximate way.
There are lots of ways of calculating both raster and vector GWS.  As more variables are involved and as the complexity of the statistic increases then there are more options to do with how to calculate it.  Additionally, (mainly for raster GWS) if some values in the region for which a statistic is being calculated are NoData then there are extra options to do with the treatment of NoData.  Furthermore, if different variables have different NoData distributions then another set of complications arises in using GWS to compare them.
Consider the difference in the following sets of numbers:
· Set 1 = ( 0, 0, 1, 1, 2, 2 )
· Set 2 = ( 0, NoData, 1, 1, 2, 2 )

Now consider which is larger:

· The sum of Set 1 or the sum of Set 2?
· The mean of Set 1 or the mean of Set 2?
Now, consider the differences in the sum and means of localised sub-regions of 9296_grid if:
· All 9296_grid values of 0 are treated with a value of 0.
· All 9296_grid values of 0 are treated with a value of NoData.
· All 9296_grid values of 0 are treated with a value of 0 except if they are coincident with road_grid cells with a value of 0 in which case they are treated with a value of NoData.
One part of this work is to map and consider these differences and more generally what maps of the various GWS help identify.

Recall that 9296_grid can be subtracted from 9701_grid on a cell by cell basis, however, (as discussed in Section 1.3), this may not yield a map which clearly shows general changes at a local level.  Figure 2.2 is a map of the simple cell by cell difference between 9296_grid and 9701_grid.  
Figure 2.2
The Simple Cell By Cell Difference
[image: image14.png]
The digital map image shown in Figure 2.2 is at a lower resolution to that of the difference grid (regardless of further report formatting, printing etc.).  On the device I am using to view the image it is very difficult to discern any pattern.  However using the GIS which exported this map it is possible to discern that where there are clusters of positive values, there are also clusters of negative values.  This assertion is backed up somewhat by Figure 2.3 which is effectively the same map as Figure 2.2 only a close up of somewhere near the centre.
Figure 2.3
The Simple Cell By Cell Difference Close Up
[image: image15.png]
Now, a GWS such as the Geographically Weighted Sum (GWSUM) can give an indication of the absolute change by smoothing the result as discussed above.  Figure 2.4 is a map of the GWSUM (for a kernel width equivalent to 20 cells) of the grid mapped in Figures 2.2 and 2.3.

Figure 2.4
The GWSUM of the grid shown in Figure 2.2
[image: image16.png]
Patterns of where SPIRAD counts have increased and decreased can be discerned far easier with the map shown in Figure 2.4 than with that shown in Figure 2.2.  Note that Figure 2.4 is going through the same display generalisation as that of Figure 2.2.  Figure 2.5 is a close up of the map for the same region shown in Figure 2.3.

Figure 2.5
Close up of the GWSUM of the grid shown in Figure 2.2

[image: image17.png]
There is a lot of generalisation going on both with the GWSUM and with the display device.  It is more than a challenge to identify from the pattern in Figure 2.3 what sub-region of the map shown on Figure 2.2 it is, it is not possible.  Identifying what part of Figure 2.4 is shown in Figure 2.5 from the pattern is also not easy.  This illustrates some of the issues of scale and resolution which makes visualisation and the reporting of results difficult.
Anyway, in the centre of Figure 2.3 the cells with non-zero values are generally positive rather than negative.  This is not instantly recognisable from the pattern of green and red in Figure 2.3, but it is clear from Figure 2.5.
The map of differences in SPIRAD distributions shown in Figures 2.4 and 2.5 is of great interest.  Parts of the map that are green show where there has been fewer recorded personal injury road accidents in 1997 to 2001 compared with 1992 to 1996.  Conversely, parts of the map that are red show where the number of personal injury road accidents has increased.  The map can be the start point for further investigation, however, this investigation is not reported here.  To keep on track, this section continues with a consideration of more complex GWS, and the task of identifying smaller, potentially more interesting subsets of the data.
The GWSUM of 9296_grid and the GWSUM of 9701_grid can be generated and the cell by cell difference of these GWSUMs can be mapped.  The map is very similar to the GWSUM of the cell by cell differences between 9296_grid and 9701_grid.  Now, by dividing the GWSUM of 9701_grid by GWSUM of 9296_grid we can obtain a filter to help reveal different proportional increases.  In the divided grid, values greater than 1 indicate where there is more SPIRAD count in 1997-2001, furthermore, values greater than 1.34 indicate where the GWSUM of SPIRAD count for 1997-2001 is more than four thirds the GWSUM of SPIRAD count for 1992-1996.  Conversely, values of less than 0.75 indicate where the GWSUM of SPIRAD count for 1997-2001 is three quarters that of the GWSUM of SPIRAD count for 1992-1996.

The divided grid can be applied as a filter so as to identify not only where SPIRAD counts are increasing and decreasing, but where they are increasing and decreasing beyond certain proportions.  Figure 2.6 is a map where the filter is set to filter cells for which the value of the 9701_grid GWSUM are between four thirds and three quarters that of the 9296_grid GWSUM.
  For Figure 2.6 the values of the filtered cells had been set to 0 and so are coloured like the background.
Figure 2.6
Filtered GWSUM of the difference between 9296_grid and 9701_grid

[image: image18.png]
Figure 2.6 compliments Figure 2.4.  Together they draw attention to areas which are observing increases and decreases in SPIRAD counts beyond a specific absolute level, and also where these differences are beyond a specific proportional level (and where they are not).  It should be noted that the level of filtering and the absolute level around zero can be adjusted to show more or less of the pattern.  Another important thing to note is that the filter produced by calculating the GWSUM of 9701_grid and the GWSUM of 9296_grid and dividing the former by the latter could not have been generated with some GWS of a division of 9296_grid and 9701_grid.  This is because the locations of non-zero cells in 9296_grid and 9701_grid are very different at the cell level.
With respect to the three different treatments of zero valued cells that are to be investigated with the raster GWS, there are other orders of operations that need to be considered.  Normalising for NoData can be done at different stages in processing and the resulting maps can be different.  An investigation is therefore appropriate to see if the difference in normalised GWS has an effect on the maps of change from one time period to the next.  The next part of this section provides more details on the internal workings of the GWSUM for raster GWS.
Normalising for NoData can be done in two slightly different ways in the calculation of the GWSUM.  Both ways involve calculating; the total sum of weights for all cells in the kernel (
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), and for each location (
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), the sum of weights for all data value cells at that location (
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).   The Normalised GWSUM (NGWSUM) and the GWSUM Normalised (GWSUMN) are then given by Equations 2.3 and 2.4 respectively, where (
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Equation 2.3
The NGWSUM at cell
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Equation 2.4
The GWSUMN at cell
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Where 
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, Equation 2.3 and Equation 2.4 simplify to Equation 2.5
Equation 2.5
The GWSUM at cell
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There is no difference between the NGWSUM and the GWSUMN where all 9296_grid and 9701_grid cell values of 0 are treated with a value of 0.  If some 9296_grid and 9701_grid cell values of 0 are treated as NoData there are differences as will be shown in Section 3.  Although these differences for the Leeds district might be subtle, the important thing is that they are different.  It might be that rather than being subtle these differences have a more significant effect in more disaggregate breakdowns of the data.
Equation 2.5 is identical to one provided in Fotheringham et al., 2002, however there it is given in a slightly different context.  Fotheringham et al. 2002 were not concerned with a rasterisation step, and so in that calculation of the GWSUM a weight is only used if there is a point of measurement.  Now, in rasterising to generate 9296_grid and 9701_grid some SPIRAD were grouped so some cells contained multiple points.  Instead of adding each points weight multiple times, in the raster GWSUM outlined above, it is effectively only added once.  This makes no difference to the GWSUM, but it does effect the NGWSUM and the GWSUMN.
For the raster GWS there is a difference between the patterns of GWSUM statistics and geographically weighted mean GWMEAN statistics.  Equations 2.6 to 2.8 are different types of GWMEAN statistics.  Again one of the equations (Equation 2.6) is identical to one in Fotheringham et al., 2002, but yet again it is different owing to the context and how it is applied.
Equation 2.6
GWMEAN1 at cell
[image: image34.wmf]j




[image: image35.wmf](

)

j

i

i

i

sumw

w

x

å

*


Equation 2.7
GWMEAN2 at cell
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Equation 2.7
NGWMEAN at cell
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Equation 2.8
GWMEANN at cell
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Section 3 is concerned with comparing the GWS for 9296_grid and 9701_grid.  In doing this, there is a particular interest in examining for effects due to the different NoData distributions.
The three vector GWS used for this study are the fixed vector GWS, the adaptive vector GWS and GAM/K.

Fixed vector GWS are very similar to raster GWS as described above only less complex.  Each point is arbitrarily given a value of 1, since it represents a single accident.  The sum of weights at any location (
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sumw

) is the volume under the kernel of a fixed width radius.  As before the weight of each point (
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) is the height of this kernel at that point.  Because the volume under a fixed kernel is constant, there is no difference between the pattern of a GWSUM and GWMEAN.
Adaptive vector GWS likewise only treats points with a value of one.  Although the bandwidth of each region examined is determined by the distance to the nth nearest point, the volume under the resulting kernel is fixed so again there is no difference between the pattern of a GWSUM and GWMEAN. However there are various comparisons that can be made.  Supposing 10 nearest neighbours is chosen, but that for the two different time periods the distance to the 10th nearest neighbour is very different.  The options are to simply ignore this, use the greater of the two distance to define the kernel, and to use the greater of the two distance to define the kernel but also use incorporate any other points within this distance into the calculation.  Again with added complexity there is a computational overhead. The question is whether it is worth it.  The main advantage of an adaptive kernel is that for simple statistics, all resulting cells have non-zero values.

GAM/K is a tool which generates GWS based on an overlapping circle geometry which is like those of the other GWS described above.  GAM/K compares two variables and produces maps of where the values of one given the values of the other are significantly different.  One big difference between GAM/K and the GWS outlined so far is that the modus operandi of GAM/K involves combining results across a range of spatial scales.  The accumulation of information is effectively a straightforward addition of results surfaces for each scale (circle size, kernel bandwidth).  The concept of cross-scale combination or accumulation of evidence is a powerful one.  Furthermore it can be extended by scale weighting to try and focus on or lend weight to particular scales.  More importantly, generating GWS for a range of scales (either using a range of fixed distances or adaptive kernels encompassing a range of different numbers of nearest measurement) then combining them is a generic way of producing results.
There are two main modes in which GAM/K operates.  In one mode it produces maps of excess clustering which show where rates of one variable to another are significantly higher.  In reverse mode GAM/K produces maps of deficit clustering which show where rates are significantly lower.  These results can generally be combined into a single result map.
The filtering in GAM/K is part done by some absolute parameters and part done with a significance testing component.  The significant testing component can operate in a number of ways, but the basic idea is the same - to filter everything but the larger anomalies in the data.  Some of the absolute parameter constraints are more of a worry.  For instance no circle is tested for significance if either variable has a value of zero.  This cannot be helped without significant modification to GAM/K or unless some arbitrary constant is added to the counts (the top and bottom of the rate) for each circle tested.  Unless this addition of a constant is employed GAM/K would never identify both regions where in the latter time period there are no accidents where there in the former time period there had been many, and conversely where in the latter time period there are many accidents where in the former time period there had been none.

To apply GAM/K to map changes in the distribution of SPIRAD over time here we are inputting point incidence of the earlier time period as the expected distribution of observed point incidence in the latter time period.  GAM/K is then run in two modes, one to identify excesses or increases, the other to identify deficit or decreases.  The argument is that the former shows where SPIRAD counts have increased a significant amount and the latter where SPIRAD counts have decreased a significant amount.  (Significant that is according to the filtering undertaken). 
3.
Results

4.
Conclusion and recommendations for further work

There are considerable differences in GWS for different treatments of zero density cells in comparing road accident and road density (accident proxy) surfaces.

Work is needed on the effects of kernel size.

Work is needed on interpreting the GWS output.
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� In dividing the two GWSUM grids, there is a special case of dividing a value through by zero which had to be accounted for.  In this case, if the value being divided was greater than zero, the resulting value was set to -1.  Any values of -1 were not filtered.
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