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Abstract 

Cities are investing in cycling infrastructure to increase the travel by bicycle. Most 
evaluation of changes to infrastructure are aspatial, simply measuring the number of riders 
on a street segment. Though a lack of spatial data on cyclists has limited to map-based 
assessment of ridership, fitness Apps (i.e., Strava) are generating spatially and temporally 
continuous VGI data cycling. Given concerns about representiveness of samples and 
completeness of data, we need to evaluate if fitness App data are a suitable tool for 
monitoring city-wide change in ridership. Our goal is to evaluate if we can conduct a 
spatially explicit evaluation of change in ridership patterns using VGI from Strava. We 
conducted our study in Ottawa, Canada using data from May 2015 and 2016. We quantified 
change in normalized ridership and utilized network-constrained local measure of spatial 
autocorrelation to identify change in riding patterns. Several spatial weights definitions 
were evaluated. We contextualized locations of change in ridership pattern with data on 
infrastructure change. Through preliminary analyses, we detected clusters of increased and 
decreased ridership that are associated with new instillations of infrastructure and a closed 
tunnel. While we will continue to require program that monitor all riders, fitness Apps 
provide a promising source of spatially explicit data that may help urban planners and 
transportation researchers better understand how people are moving through a city. 
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1. Context 

Cycling is a sustainable mode of transportation with numerous health, environmental and social 
benefits, yet ridership levels remain low in North America. To encourage increased ridership, cities 
are making significant investments in cycling infrastructure, a number of cities investing in cycling 
infrastructure networks (Pucher & Buehler, 2008). It is essential that cities monitor and report on the 
impact of infrastructure projects on ridership to be accountable to the public and to encourage 
political will for future investments in cycling infrastructure (Handy et al., 2014). Ridership is typically 
monitored aspatially, by counting the number of cyclists on a road segment before and after 
infrastructure changes. Aspatial assessments of ridership do not account for changes in patterns and 
ignore the potential for cyclist change routes in repose to upgrades in cycling infrastructure. While 
mapped based monitoring of ridership can better illuminate how patterns of cycling are changing in 
a city, spatially explicit ridership data has been difficult to obtain. Fitness App data are changing the 
availability of ridership data and providing a spatially explicit data on where people ride (Jestico et 
al., 2016). However, fitness App data, like other VGI, are a biased sample of users, as they tend to 
underrepresent women and young and old riders (Ferster et al. 2017). As well, the number of people 
using fitness Apps can change through time making the sample size difficult to ascertain.   
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Our goal is to evaluate if we can utilize bike ridership VGI to monitor change in patterns of cycling 
across a city in response to cycling infrastructure investment. The data used to represent ridership 
data generated by users of Strava.com, arguably the most popular commercial cycling App for 
Ottawa, Canada in May 2015 and 2016. 

2.0 Study area and data 

Ottawa is Canada’s Capital Region and contains over 600 km of bicycle paths. The region has 
invested significant financial resources in bicycle and multi-use infrastructure over the past several 
years to promote active transportation. The VGI dataset is from Strava, a mobile health and fitness 
application and we are utilizing data through a partnership between Strava and the City of Ottawa. 
The data includes activity counts (bicycle trips) per segment of transportation infrastructure in the 
Ottawa region, aggregated for weekdays in May 2015 and May 2016. There were a total of 4.49 
million activity counts from 52,123 bike trips across 71,205 network segments.  

3.0 Methods 

To map change in ridership we summed the total count of all activities across the study area for each 
time period and calculated the proportion of trips that occurred on each segment. We subtracted 
normalized ridership in 2015 from 2016 on a segment-by-segment basis and created a map of the 
absolute difference. We visualized the resulting map in an attempt to identify change in the spatial 
variation of bicycle trips. The normalized change in ridership was used as input for a network based 
local Moran’s Ii to map clustering in ridership change (Yamada and Thill 2007). As all spatial methods 
are sensitive to definitions of what is nearby, we used three definitions of the spatial weights matrix 
or neighborhood: first order contiguity with equal weighting; second order contiguity with equal 
weighting of all neighbors; and second order contiguity with weight varying based on the degree of 
contiguity (Nelson and Boots 2008). Local Moran’s Ii enables evaluation of statistically significant 
change in patterns of ridership and considers each segment of the network in the context of what 
surrounds it (Anselin 1995; Nelson and Boots 2008). The results of local Moran’s Ii is a map of 
clusters or hot spots of increased ridership and decreased ridership, as well as outlier segments, 
where the segment showed an increase or decrease and surrounding segments had an opposite 
change in ridership.  To contextualize how the approach can be used to monitor ridership, maps of 
change in spatial patterns of ridership were annotated with changes that occurred in the cycling 
network between May 2015 and May 2016. 

4.0 Results 

The map of normalized change in ridership enabled the identification of segments with an increase 
or decrease in normalized change in ridership, but it was not possible to identify where statistically 
significant change had occurred or if clustering was present in the variation in ridership (Figure 1a). 
Corridors and regions of statistically significant change in normalized ridership by visualizing maps of 
the network based Local Moran’s Ii applied to change in ridership between years (Figure 1b). Larger 
clusters were observed when using second order contiguity to define a neighborhood as compared 
to first order contiguity (Figure 1c). Little difference was observed between weighted and 
unweighted second order contiguity (Figure 1d). Upon annotating the maps of Local Moran’s Ii we 
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observed changes in the distribution of ridership following both the installation of new cycling 
infrastructure and the closure of existing infrastructure (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A) Absolute change in normalized ridership, May 2015 to May 2016. B) Local Moran’s Ii 
using the difference of normalized ridership between May 2016 and May 2015. Spatial 
neighborhood defined by first order contiguity and equal weighting of all neighbors. High-high is a 
cluster of increased ridership; low-low is a cluster of decreased ridership; high-low is an outlier or a 
road segment where increased ridership is surrounded by a decrease; low-high is an outlier or a road 
segment where decreased ridership is surrounded by an increase in ridership. C) Local Moran’s Ii 
using the difference of normalized ridership between May 2016 and May 2015. Spatial 
neighborhood defined by second order contiguity with varying weights depending on the level of 
contiguity (first order neighbor = 1, second order neighbor = 0.5). D) Local Moran’s Ii using the 
difference of normalized ridership between May 2016 and May 2015. Spatial neighborhood defined 
by second order contiguity with equal weighting of all neighbors. 
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Figure 2. Examples of preliminary annotation of spatial patterns of change in ridership for Ottawa. A)  
Clusters of increased in ridership and a decreased ridership are associated with a new multi-use 
bridge path. B) Changes in patterns of ridership associated with a tunnel closure. 

5.0 Discussion and Significance 

Monitoring and evaluation of the impacts of investment in cycling infrastructure across a city have 
been limited by a lack of spatially explicit ridership data. However, the results illustrated here 
demonstrate the importance of consider patterns of change in cycling when infrastructure changes 
in a city. In both the example of a closed tunnel and new multi-use trail bridge (Figure 2) 
infrastructure change in one location affects the flow and amount of bicycle traffic in multiple 
locations. As cities invest more heavily in cycling infrastructure, the need to evaluate how ridership 
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changes is paramount.  The next step in our investigation is to quantify if the patterns of change in 
Strava riders represent patterns for all the cyclists. Anecdotally, in Ottawa the representation of 
cyclists may be strengthen by a campaign undertaken by the City of Ottawa to encourage cyclists of 
all ages and abilities to log rides prior to purchasing the Strava data. 

While the methods used here are well known to geographers, the application to fitness app data is 
an important one. A focus on detecting statistically significant change in spatial pattern of ridership 
is paramount to the successful use of Strava data for transportation planning and research. Using 
Local Moran’s Ii we can determine when the change in ridership patterns are unexpected based on 
chance, which is a threshold that can be defended. The unique aspect of fitness App data is that we 
sample movement across a city. With millions of users, Strava makes a strong case that fitness Apps 
are a growing data source and demonstrating how to effectively convert data into useful information 
will help fill gaps in cycling data. Planning and research will continue to require official and 
comprehensive count programs to monitor total number of cyclists, but the logistics official counts 
inherently restrict these to a few locations within the city. Jestico et al (2016) found that there is a 
strong correlation between Strava and all riders in the core of a mid-sized North American city. Tools 
to expand use of data to evaluate  how patterns of movement are shifting is an additional benefit.  

Methodologically, the spatial weights used to implement local methods of spatial autocorrelation is 
an important consideration (Nelson and Boots 2008). Despite the spatial weights definition, as 
applied to a network, we found the pattern of change detected similar, and as expected second 
order contiguity found bigger clusters. In future, setting up weights matrices to consider flow of 
traffic could be beneficial for monitoring change in traffic pattern. 

Strava and other fitness App data represent an important source of VGI that is filling a massive gap 
in mobility data, particular associated with active transportation. As a geocomputation community 
we need to lead the demonstration of how to use big spatial data sets on mobility appropriately to 
better understand mobility in cities. Planners, transportation engineers, and researchers can use the 
methods outlined here to monitor changes in ridership patterns following investment in 
infrastructure or other changes to the transportation network.  
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