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Abstract 

The modelling of spatial choices is solidly grounded in the behavioural theory of discrete 

choices, which itself conceptualizes spatial choices as the result of a process consistent 

with random utility theory. Utility-based discrete choice models provide the primary 

framework of analysis of spatial choices. More recently computational models and 

machine learning techniques have also been shown to be quite effective at 

comprehending the factors of spatial choices. They have been justified on conceptual 

grounds based on alternative principles of human decision making and information 

processing. Within this context, this paper proposes a semi-supervised neural network 

learning system, ART-P-MAP, for spatial choice modelling. A behavioural foundation for 

this model is provided aiming to alleviate some of the limitations of conventional 

modelling approaches. Due to its inherent model structure and learning mechanism, the 

new approach allows various factors to be taken into consideration and more complex 

structures to be captured from the empirical data. An illustrative case in Minneapolis-St. 

Paul, MN, is provided for evaluating the proposed model's performance with a 

comparison to a decision tree model. 
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1. Introduction 

Spatial choice theory has been dominated by the paradigm of a two-stage process (Timmermans and 

Golledge, 1992). The universe of alternatives is reduced in the first stage to a smaller set called the 

choice set whose construction depends upon one’s knowledge and awareness of choice alternatives, 

the feasibility and accessibility of alternatives as well as their perceived characteristics at decision 

time. Existing modelling frameworks were usually formalized in the context of random utility choice 

modelling (Fotheringham and O’Kelly, 1989). Choice probabilities are decomposed into probabilities 

for obtaining given choice sets and choice probabilities conditional upon choice sets. Numerous 

approaches have been proposed for spatial choice set modelling such as nested logit and competing 

destinations. However, they are still subjected to limitations including predefined clusters of 

alternatives or pre-specified functional forms for choice set estimation. In addition, the assumption of 

identical individual made in random utility theory and the related concept of choice set restricts 

themselves to taking no account of the variation of individuals’ decision patterns across individuals 

because of a large number of decision makers and the variety of circumstances that regulate the 

delineation of their choice sets. Recognizing the capability of computational intelligence techniques, 

which provides the mechanisms by which knowledge is acquired inductively by extracting useful 
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information from raw datasets, this study is to incorporate these techniques into the existing choice set 

modelling framework to overcome some limitations imposed on the conventional methods. 

In previous research by Thill and Wheeler (2000), an inductive decision tree was used to fit a 

destination choice dataset (including decision makers’ socio-economic characteristics, separation 

between destinations and decision makers, and characteristics of destinations) to derive the decision 

rules that reflect factors influencing destination choice. Although this model is capable of estimating 

the choice set by extracting information from the empirical data, it assumes a uniform hierarchical 

structure of preferences for all decision makers’ information processing strategies to delineate choice 

sets and make decisions. This is not appropriate for realistic situations where the hierarchical 

structures may well vary across decision makers. 

 

2. Spatial decision pattern and ART-P-MAP  

This study aims at forming a concept of spatial decision pattern that is an alterative to the concept of 

choice set. Decision patterns can be represented as hypothetical clusters pertaining to choices made by 

individuals. These hypothetical clusters mean to capture various and complex structures (not only 

hierarchical) of information processing strategies of decision makers from empirical data. These 

clusters can be extracted by learning models in a multi-attribute space constructed from utility related 

factors, including characteristics of individuals, characteristics of alternatives and their separation; 

they can also be utilized to predict the probability for a specific choice. The challenge is that these 

hypothetical clusters need to be detected, confirmed, and accommodated automatically by a learning 

model, which means that there is no assumption or pre-specification regarding the property of these 

clusters (e.g., number and structure). 

To address the above issue, this study proposes to adopt ART-P-MAP neural networks, a general 

incremental learning model developed by Gong et al. (2015) for spatial modelling involving discrete 

choices. ART-P-MAP has the capability to automatically accommodate heterogeneous decision 

patterns based on adaptive resonance theory (Gong et al., 2015) and to make inference regarding 

choice probabilities based on Bayesian decision theory. In other words, it can adaptively formulate its 

network structure of hypothetical clusters during the training phase; more importantly, it explicitly 

makes probabilistic inference in response to heterogeneous data environments during prediction 

phase. For specifics on training and prediction, please refer to Gong et al. (2015). In prediction, the 

probability for a choice 𝑜 among the choice universe O given an input data 𝐼 is computed as: 

𝑃(𝑜|𝐼) =
∑ 𝐹𝑗𝑜𝐶𝑗ℎ𝑗∈{𝐶𝑗≥𝛾}

∑ ∑ 𝐹𝑗𝑜𝐶𝑗ℎ𝑗∈{𝐶𝑗≥𝛾}𝑜∈𝑂
                                                Equation 1 

where 𝐹𝑗𝑜 is the frequency of inputs with a choice 𝑜 recorded for j th hypothetical cluster ℎ𝑗, 𝛾 is a 

threshold for a match function 𝐶𝑗 =
|𝐼∧𝑊𝑗|

|𝑊𝑗|
, which measures the degree of match between an input 𝐼 

and a hypothetical cluster ℎ𝑗  using weights 𝑊𝑗 that characterize ℎ𝑗.  
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3. Case study 

The data used for evaluating the proposed approach is from the 1990 Minneapolis-St. Paul travel 

behaviour inventory, which is same dataset used in Thill and Wheeler (2000). The dataset consisting 

of 667 trips extracted from the original database meets the following conditions such that trips are 

home-based, trip origins and destinations are georeferenced to corresponding traffic analysis zones 

(TAZ) that are within the metropolitan area, trips are not part of a multistep tour, their purpose is 

shopping, and travel is by car. In total, 1,165 TAZs form the universal destination set for the spatial 

choice problem. A training set is generated as follows. For each of the 667 realized trips, 100 

unchosen destinations are randomly selected from the universal destination set, which are combined 

with the origin of the realized trip. Thus, the training set consists of 67,367 records of combined 

origins and destinations, among which only 667 are realized trips. 19 factors defining the attribute 

space are included in the data (Table 1).  

Factor Definition 

DISTANCE Travel distance 

TIME Travel time 

POP90 1990 employment count at destination 

RET_EM 1990 employment in retailing at destination 

PERSERV_EM 1990 employment in personal services at destination 

MALL 1 if regional mall at destination; 0 otherwise 

AREA_TYPED1 1 if trip destination is in a developed area; 0 otherwise 

AREA_TYPED2 1 if trip destination is in central city/CBDs; 0 otherwise 

AREA_TYPED3 1 if trip destination is in an outlying business district; 0 otherwise 

AREA_TYPEO1 1 if trip destination is a developed area; 0 otherwise 

AREA_TYPEO2 1 if trip origin is in central city/CBDs; 0 otherwise 

AREA_TYPEO3 1 if trip origin is in an outlying business district; 0 otherwise 

PCOMLU Percent of destination area occupied by commercial/service land use 

AGE Age of the decision-maker 

GENDER 1 if decision-maker is male; 0 if female 

INCOME 1 if annual house hold income is over $35,000; 0 otherwise 

HHLDSIZE Number of members in the decision-maker’s household 

INFANTS Number of infants under 5 in household 

CARS Number of cars in household 

 

Table 1: Factor description. 

 

4. Results and discussion 

5-fold cross-validation is applied to evaluate the accuracy of the proposed modelling approach. 

Results (Appendix 6.1 – 6.5) show that the performance for the proposed model is quite consistent. 

The total average accuracy (Table 2) is 98.4%; the average accuracies for Chosen and UnChosen 

categories (Table 2) are 19.4% and 99.2%, respectively. This contrast between accuracies of two 
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categories is not surprising since the Chosen category only occupies a very small proportion of the 

entire dataset. Therefore, it has less chance to predict the Chosen category. This problem may result 

from the nature of frequency-based statistical approach embedded in the proposed model. 

Category Average Accuracy 

Chosen 0.193692 

UnChosen 0.991933 

Total 0.984028 

 

Table 2: Model accuracy for ART-P-MAP. 

 

For comparison purpose, Table 3 shows results from a decision tree model used by Thill and Wheeler 

(2000) applied to the same dataset with 3/5 of all records for training and the rest for validation. First, 

it is noted that the decision tree achieves much higher sensitivity with 28.8% (proportion of the actual 

Chosen captured). This is because decision tree predicts much more records to be the Chosen 

category. In other words, it overestimates the chance of a destination to be chosen. Although it 

captures many true Chosen records, it loses more true UnChosen records (low accuracy 82.4%). On 

the other hand, when it over-predicts the Chosen category, the proportion of correct hits is very low 

(precision of 1.6%). In all, the 81.9% total accuracy for decision tree is much lower than for ART-P-

MAP (98.4%). 

 

Error Matrix 
Actual 

 
Chosen UnChosen Total 

Predicted 

Chosen 77 4690 4767 0.016153 

UnChosen 190 22010 22200 0.991441 

Total 267 26700 26967  

 0.28839 0.824345  0.819038 

 

Table 3: Error matrix for decision tree model. 

 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

AUR 0.864166 0.83923 0.867021 0.834223 0.880705 0.857069 

 

Table 4: Areas under ROC curves for ART-P-MAP. 

To further examine the performance of the proposed model, the ROC curve and AUR (Area under 

ROC Curve) for the 5-fold cross validation and their average are provide (Table 4 and Figure 2). 

Generally, the performance for each fold is consistently similar based on the curve and AUR. On 

average, 85.7% of AUR is obtained, indicating that the model achieves high performance. In sum, 
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according to the performance evaluation and comparison on the exemplar travel behaviour dataset, the 

ART-P-MAP model surpasses the decision tree model for destination choice modelling. 

 

Figure 2: ROC curves for 5-fold cross-validation of ART-P-MAP. 
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6. Appendix 

6.1 Fold 1 error matrix for ART-P-MAP 

Error Matrix Actual  



6 
 

Chosen UnChosen Total 

Predicted 

Chosen 23 102 125 0.184 

UnChosen 102 13247 13349 0.992359 

Total 125 13349 13474  

 0.184 0.992359  0.98486 

 
6.2 Fold 2 error matrix for ART-P-MAP 

Error Matrix 
Actual 

 
Chosen UnChosen Total 

Predicted 

Chosen 27 89 116 0.232759 

UnChosen 89 13269 13358 0.993337 

Total 116 13358 13474  

 0.232759 0.993337  0.986789 

 
6.3 Fold 3 error matrix for ART-P-MAP 

Error Matrix 
Actual 

 
Chosen UnChosen Total 

Predicted 

Chosen 22 116 138 0.15942 

UnChosen 116 13219 13335 0.991301 

Total 138 13335 13473  

 0.15942 0.991301  0.98278 

 
6.4 Fold 4 error matrix for ART-P-MAP 

Error Matrix 
Actual 

 
Chosen UnChosen Total 

Predicted 

Chosen 23 104 127 0.181102 

UnChosen 104 13242 13346 0.992207 

Total 127 13346 13473  

 0.181102 0.992207  0.984562 

 
6.5 Fold 5 error matrix for ART-P-MAP 

Error Matrix 
Actual 

 
Chosen UnChosen Total 

Predicted 

Chosen 34 127 161 0.21118 

UnChosen 127 13185 13312 0.99046 

Total 161 13312 13473  

 0.21118 0.99046  0.981147 

 

 


