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Abstract

Global warming has shifted the onset of spring plant phenology towards earlier dates.
This shift can lead to “false springs” (plants get frost damage) because the date of last
frost has not advanced at the same pace than the advancement of spring onset. Here, we
use a cloud computing approach for processing big and high spatial resolution grids of
temperature  data  to  map the  occurrence  of  false  springs  and to  study their  temporal
trends. We demonstrate our approach using Daymet, which provides daily weather data at
1km for continental US, and the extended spring indices models. Results show that the
risk of having false springs is high in the Midwest  and in Northeast  of  the US. This
extensive  regional  variation  highlights  the  necessity  of  continuous  monitoring  and
mapping of false spring.
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1. Introduction

The increase in global temperature has resulted in earlier onsets of spring plant growth (Schwartz et
al.  2006).  However,  the rate of change of last  frosts has not  advanced at  the same pace and this
mismatch has led to the occurrence of “false springs” (i.e.  springs where plants get frost damage
(Knudson 2012)). False springs affect both natural and agricultural systems because frost damage can
reduce  plant  productivity  and,  as  a  result,  can  have  a  negative  impact  on  the  dependent  animal
populations (Augspurger 2013). For instance, the agricultural damage caused by the false spring of
2012 was estimated in 500$ millions only in the state of Michigan (Ault et al. 2013; Knudson 2012).
Thus, the study of false springs is key to understanding the ecological and financial impact of climate
change on terrestrial ecosystems.

Phenology is the science that studies periodic plant and animal life cycle events and how seasonal and
inter‐annual weather and climate variations affect them. Plants in mid-latitudes such as in US are
particularly  responsive  to  temperature  variations  in  the  spring  season  (Schwartz  1999).  Hence,
phenological models addressing spring phenology are extremely useful for monitoring false springs.
These models can be used to predict the timing of phenological events, including the onset of spring.
For example, the extended spring indices (SI-x) are a suite of phenological models widely used to
predict spring phenology (Allstadt et al. 2015; Izquierdo-Verdiguier et al. 2017). Although the SI-x
were  calibrated  to  predict  the  day  of  the  year  (DOY)  of  first  leaf  and  bloom  for  lilacs  and
honeysuckle, these models have proven their usefulness to predict spring onset. This is because the
timing of first  leaf  and first  bloom for these species are highly correlated with other natural  and
agricultural events (Schwartz et al. 2013).
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The SI-x models use daily minimum and maximum temperatures to predict the DOY of two primary
variables (First Leaf and First Bloom) and two derivative products (DOY of Last Frost and Damage
Index). The availability of these meteorological variables at fine spatial resolutions and over long
periods of time provides a unique opportunity to study the spatial and temporal patterns of the false
springs.  However,  limitations  in  processing  power  have  hampered  the  production  of  these  geo-
information products at continental scales.

This paper proposes a cloud-based approach for processing time series of high spatial resolution grids
of  weather  data  using a  phenological  model  that  can be used to  identify the  occurrence of  false
springs.  In  particular,  we  explore  and  demonstrate  a  well-known  cloud  computing  solution  to
calculate and map false spring over continental US using the SI-x and Daymet weather dataset.

2. Materials and methods

We used Daymet (Thornton et al. 1997), a daily weather dataset, to calculate spring onset dates with
the SI-x models and to map the occurrence of false springs over continental US. Daymet provides
gridded data at 1km and since 1980. These characteristics made a suitable dataset  to analyse the
spatial  and temporal  patterns  of  false  springs  at  continental  scales.  For  this  study,  we processed
Daymet minimum and maximum temperature and day length data for the period 1980-2015. The total
size of this data was about 630 GB.

Cloud computing solutions provide on demand shared computer processing resources and access to
big datasets. For this study, we used Google Earth Engine1 (GEE), a specialized cloud computing
platform for geospatial processing. GEE contains a data catalogue that includes satellite images as
well as other gridded datasets like Daymet. We used the python application programming interface of
GEE (GEE-API) to generate yearly maps of the damage index, which records the anomalous number
of days between the DOY of first leaf and DOY of the last day whose minimum temperature drops
below -2.2 degree Celsius (Allstadt et al. 2015).

We used a linear regression to model the trend in damage index over the complete study period to
understand and map the impact of climate change in the US. We also generated yearly binary maps of
false spring. These maps take the value 1 if the DOY of the last freeze occurred during within seven
days after the DOY of first leaf and the value 0 otherwise. Finally, we also calculated the mean of the
damage index anomalies and of the false springs for the complete study period.

3. Results and Discussion

Figure  1 illustrates  the  average  damage index anomalies  from 1980 to  2015 and shows that  the
variability of last freezing ranges from about 10 days before to 10 days after the DOY of the first leaf.
The areas with negative values are areas where first leaf tends to occur after the last freeze. These
areas  often  do  not  experience  freezing  weather  such  as  the  Gulf  and  the  West  Coasts  and  the
Southwest. Or, they are areas where phenology is mostly driven by photoperiod (e.g., upper Midwest,
Western New York). In areas with positive values the first leaf frequently occurs before the last freeze
(e.g., North Central and Rockies, Central/Midwest).

1https://developers.google.com/earth-engine/
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Figure 1: The average difference between DOY of first leaf and last freeze from 1980 to 2015.

Figure 2 shows the temporal trend of damage index for the period 1980 to 2015. Increase in damage
index were very common throughout much of the region, occurring almost at all locations. However,
the increase was larger in certain high elevation areas and southern US than the rest of the US. The
positive values in the trend of damage index are concentrated in the Great Plains due to either early
last  freeze dates  or  late  first  leaf  dates.  The areas  coloured  in  white  have  similar  damage  index
anomalies over the complete study period (i.e., no temporal trend in damage index values).

Figure 2: The trend of damage index from 1980 to 2015.

Figure 3 shows the probability of false spring which is the average of binary false spring grids for the
period 1980 to 2015. The probability of false spring in the conterminous US was less than 0.5. As
expected, the Midwest (especially upper Midwest and the Great Lakes) and Northeast have a higher
probability of false spring than other parts of the US, while North Florida, which is not known as an
icy area, has the smallest probability. This results are in line with the general findings of the literature,
including Ault et al (2013)
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Figure 3: The average false spring from 1980 to 2015.

4. Conclusions

The developed cloud-based approach to map false spring at very high spatial resolution (1km), over
larger areas (continental US) and for a long period (more than three decades) was computationally
efficient. This allowed us to map the spatial pattern of false spring and to study its temporal trends.
This  information  improves  our  understanding  of  the  impact  of  climate  change  over  terrestrial
ecosystems. Our results revealed that the risk of false spring exists throughout much of the US while
the risk is  higher in the Midwest  and Northeast  than the rest  of  the US. This extensive regional
variation highlights  the  need for  future  species-specific  predictions  to  better  understand potential
effects on natural and agricultural systems.
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