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Abstract: In 2011, an effort was undertaken to link the Global Environmental Facility (GEF) Land Degradation 

Focal Area Strategy and the United Nations Convention to Combat Deforestation ten year (2008 to 2018) strategy to 

streamline investments in sustainable land management.  One goal of this streamlining initiative was to promote 

understanding of the long-term impacts of GEF activities on key environmental indicators.  This paper presents a 

novel datasets on the location of GEF activities, and uses this information in conjunction with satellite ancillary data 

and a novel machine learning technique to examine heterogeneity in the global impacts of GEF projects along three 

dimensions - vegetation productivity, forest fragmentation, and forest cover change.  A four-step approach is 

adopted in which (a) precise geospatial data on GEF project locations is generated in compliance with the 

International Aid Transparency Initiative (IATI) standard, (b) satellite information is used to derived long-term 

measurements of each of the three outcomes being assessed at each geographic location [following UNCCD 2015 

guidance on indicator selection], (c) the data generated in steps a and b is integrated with a wide set of 

geographically-varying ancillary data (i.e., nighttime lights, population, distances to roads and rivers) to enable the 

match of GEF locations to “control” locations where no intervention occurred, (d) a novel propensity score matching 

approach, Causal Trees (CT), are employed to attribute the impact of GEF project locations on each indicator of 

interest. Key findings included (1) a lag time of 4.5 to 5.5 years was an important inflection point at which impacts 

were observed to be larger in magnitude, (2) the initial state of the environment is a key driver in GEF impacts, with 

GEF projects tending to have a larger impact in areas with a poor initial condition, and (3) projects located in Africa 

and Asia had generally positive impacts on average excepting in the case of forest fragmentation, while projects in 

LAC, North and South America, and Oceania all had positive impacts on all three indicators.  Finally, we highlight 

many directions for future research, in particular the need for improvements in current methods for identifying 

heterogeneity in impacts. 

 

 

 

 

 

 

 

 

 



Introduction & Literature 

Data 
The impact of GEF projects are examined along multiple indicators to capture fluctuations in natural               

capital, following the indicators suggested in the monitoring framework of the UNCCD for measuring land               
degradation (UNCCD 2015). This analysis is implemented with two tier 1 metrics to examine impacts on land cover                  
change (metrics of forest fragmentation and forest cover), as well as two tier 2 metrics (vegetation productivity,                 
carbon stocks). These are defined and discussed more extensively in the appendix.  

Each of these measurements are calculated with the following procedures for each geocoded GEF project               
(see appendix I for more detail): 

a. Vegetation Productivity - The yearly maximum productivity for each GEF project is            
calculated on an annual basis from 1985 to 2015 using the Long Term Data Record               
NDVI product.  

b. Forest Cover Change - The Tree Cover product from GLCF is employed to detect land               
cover change. These products are available at 30-meter resolution for circa 1980, 1990,             
and 2000, and on an yearly basis for years 2001 to 2015. The tree cover is expressed as                  
percent cover per pixel. The absolute annual change in tree cover is calculated post-2000,              
while a baseline is calculated using the data from years prior to 2000. 

c. Forest Fragmentation - Within the area of influence calculated for each GEF project, a              
regionally-varying threshold is applied to the percent tree cover. This produces a binary             
forest vs. non-forest cover map for each VCF time period. For each GEF project, the               
level of forest fragmentation is then calculated for each VCF time period. For this              
analysis, the average patch size is used as a summary metric for fragmentation. 

d. Carbon Stocks and Sequestration - Using the above products, Ecofloristic Zone Carbon            
Fractions derived by the Oak Ridge National Laboratory is leveraged to estimate carbon             
stocks. While these estimates will have inherent measurement error, the combination of            
field-based estimates and remote sensing techniques has become the primary method of            
examining carbon stocks and carbon sequestration , due to difficulties with solely           1

field-based estimates . 2

Following the broad scope of this assessment, as many GEF project locations as is feasible are included in                  
the analysis frame. To accomplish this goal, this report relies on a geocoded dataset produced by AidData (see                  
Appendix III) which represents GEF land degradation projects spanning from January of 2002 until January of 2014.                 
These 202 projects have 1,704 project locations associated with them (see figure 1); of these 1,704 this report                  
focuses on 446 for which exact geographic information is available - i.e., the latitude and longitude at which the                   
project was executed is known (see figure 2).  

1 Asner GP, Powell GVN, Mascaro J, et al. High-resolution forest carbon stocks and emissions in the amazon. Proc Natl Acad Sci U S A. 
2010;107(38):16738-16742. doi: 10.1073/pnas.1004875107. 
2Saatchi SS, Harris NL, Brown S, et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci U 
S A. 2011;108(24):9899-9904. doi: 10.1073/pnas.1019576108. 

https://paperpile.com/c/NlzFcx/mK0B


 
Figure 1. The location of all geocoded GEF Land Degradation projects. 

 
 

 
Figure 2. The location of geocoded GEF Land Degradation projects known with a high degree of geographic 

precision. 
 
 

In addition to the measured locations of GEF projects, thousands of potential control cases are created in                 
areas proximate to GEF activities, but that contained no interventions. The geographic area from which control                
cases were selected are shown in figure 3. Eligible control locations were limited to be no further than 500                   
kilometers from an existing GEF project in order to provide better potential matches, but were limited to be no                   
closer than 50 kilometers to minimize potential spillover effects.  



 
Figure 3. Locations eligible to become a control for comparison. 

 
For each GEF project location and eligible control site, the outcome metric of vegetation productivity,               

forest cover change, and forest fragmentation are calculated. Baseline trends and levels for each of these metrics are                  
calculated by identifying the pre-intervention time period for each GEF project location. To further facilitate               
matching, a variety of covariate information is retrieved for each location, summarized in table 1. 
 

Table 1. Key Covariate Data Sources 

Domain Source Topic # of Obs.  

Current Coverage 

Spatial Res. Temporal Spatial 

Human Development DMSP-OLS 
VIIRS 

Nighttime lights N/A  3 1992-2016 Global Grid cell (1km; 
250m) 

gROADS Road networks N/A 1980-2010 Global Grid cell 
(~1km) 

Political WDPA WDPA 
Environmental 
protection areas 

220,453 2015 Global Variable 

Demography GPW  Population N/A 1990-2020 every 
5 years 

Global Grid cell 
(5km / 1km) 

 

Environment and 
Natural Resources 

HydroSHEDS River Networks N/A 1995-2005 Global Grid cell 
 (~1km) 

SRTM Elevation / Slope N/A 2000 Global Grid cell (500m) 

UDel Air temperature N/A 1900-2014 Global Grid cell 
(50km) 

Precipitation N/A 1900-2014 Global Grid cell 
(50km) 

3 For raster datasets, see spatial resolution for a more accurate depiction of measurement density. 

http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1
http://climate.geog.udel.edu/~climate/html_pages/download.html
http://hydrosheds.cr.usgs.gov/
http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1
https://jointmission.gsfc.nasa.gov/viirs.html
http://www2.jpl.nasa.gov/srtm/
http://protectedplanet.com/
http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density


Methods 
Three different causal models are estimated, employing two different counterfactuals.  These are 

summarized in table 2.  Each model estimates the impact of GEF project locations on a single indicator: (Q1) NDVI, 
or vegetation density; (Q2) forest land cover; and (Q3) the fragmentation of forests.  Counterfactuals are defined 
according to two different units of observation.  In case 1 (C1), each GEF project is buffered by 25km, and 
information is aggregated to those buffers.  These 25km buffers are then compared to randomly distributed 25km 
buffers which did not contain a GEF project (all controls are limited to areas within 500km of GEF projects, but not 
less than 50km distant).  In case 2 (C2), the watershed each GEF project falls within (defined using the HydroSheds 
database) is identified.  These watersheds are then compared to similar watersheds which did not contain a GEF 
project.  Because the scale and scope of watersheds is highly variable across GEF projects, this report employs the 
watershed case as a robustness check, primarily reporting results from the 25km buffer case.  
 
Table 2. Summary of conducted analyses. 

 C1. 25km Buffer C2. Watershed 

Q1. Impact of GEF projects on Vegetative 
Density 

Unit of Observation: 25km Buffers 
Outcome Metric Source: LTDR 

Unit of Observation: Watershed 
Outcome Metric Source: LTDR 

Q2. Impact of GEF projects on forest land 
cover 

Unit of Observation: 25km Buffers 
Outcome Metric Source: Hansen 

Unit of Observation: Watershed 
Outcome Metric Source: LTDR 

Q3. Impact of GEF projects on forest 
fragmentation 

Unit of Observation: 25km Buffers 
Outcome Metric Source: GLCF 

Unit of Observation: 25km Buffer  4

Outcome Metric Source: LTDR 

 

Causal Attribution Model 
Recent work has illustrated that - with key adjustments - tree-based machine learning approaches can be 

used to identify how the causal effects of an intervention (i.e., international aid; a medical treatment) vary across key 
parameters (such as geographic space; see Athey and Imbens 2015a; Staff 2014; Shen et al. 2016). This is key for 
top-down, or global-scope analyses, as it is unlikely that aid projects will have the same effect across highly variable 
geographic contexts, and the drivers of such variation may not be known. A detailed explanation of this approach is 
included in the appendix, while figure 4 shows an example drawn from exploratory research in which a Causal Tree 
is applied to a limited subset of international aid, examining aid’s impact on a maximum observed NDVI value.  

4 In both cases, forest cover fragmentation was measured at the buffer scope due to the highly variable size of 
watersheds making comparisons of forest fragmentation impacts across different units impractical. 

https://paperpile.com/c/NlzFcx/1bMuI+j6MJY+pCXAa


 
Figure 4. Illustrative example Causal Tree. 

 
This figure serves as an illustrative example of the outputs of Causal Tree based approaches to identifying 

how impact effects may differ across a dataset.  Within each terminal node in Figure 4, the difference between a 
weighted outcome of all treated cases (areas that received aid) is contrasted to control cases (areas that did not 
receive aid), and the value displayed can be directly interpreted as the causal impact of the treatment (in this 
example, the presence of aid) on the metric of interest (i.e., NDVI).  At each step of the tree, a statement (i.e., 
“Maximum Precipitation < 93mm”) is tested as true or false for each observation, and the impact of a given 
observation can be determined by identifying where it falls in the tree.  As a simple example, the tree in figure 4 
would provide evidence that international aid projects located in areas with a maximum yearly precipitation greater 
than 93 mm, that provide less than 1.4 million dollars of aid, and are farther than roughly a kilometer (635 meters) 
from an urban area tend to increase NDVI by 0.089.    Appendix II provides a detailed description of the causal tree 
approach. 

Results 

Descriptive Findings 
A total of 1,704 GEF project locations were included in this analysis from 445 projects, ranging in 

implementation date from 2002 to 2014.  These projects had disbursement levels ranging from $200,000 to $35.4 
million USD.  Over time, larger-scale projects tended to occur (on average) in the earlier time period, with a slight 
decreasing trend occurring towards 2014 (see figure 5).  



 
Figure 5. Average project disbursements over time. 

 
The results of a descriptive analysis examining the characteristics of GEF project locations (only 

considering projects for which an exact geographic location was available) can be found in table 3.  These 
descriptors were based on the 25km areas around each GEF Land Degradation project.  A few key findings are 
highlighted: 

● GEF projects were located in areas that - on average - experienced positive increases in 
NDVI from 1982 to 2014.  

● All GEF projects were within 25km of a designated protected areas (as defined by the 
IUCN designations to identify legally empowered protected areas) of any kind. 

● GEF projects tended to be located in areas with relatively low population density and 
electrification. 

● The physical geographic characteristics of areas the GEF operates in are highly variable, 
in terms of temperature, precipitation, elevation and slope.  Elevation is particularly 
notable in this regard, ranging from near-sea-level (~600 meters) to altitudes of 5,000 
meters. 

● Not all GEF LD projects are located in areas that have forest cover; 60 project locations 
were found to have no tree cover in the initial 2000 period.  However, NDVI 
measurements suggest that these areas did have vegetative biomass. 

While these descriptive findings do not indicate causality of GEF LD projects, they do provide insights into the 
highly varied geographies in which GEF LD projects operate. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



Table 3. Descriptive Statistics of GEF Project Locations. 

Causal Impacts 
For each of the six models specified in table 2, a Causal Tree is fit to identify the subsets of GEF projects 

for which differential treatment effects can be observed.  This results in six different trees, which are summarized in 
this report.  For the buffered cases, we highlight the overall findings (i.e., if GEF projects in aggregate had positive, 
negative, or neutral impacts), as well as key findings of drivers of heterogeneity in causal impacts.  For the case of 
watersheds we contrast the results to facilitate a robustness check.  Of key note is that, while each tree is unique, 
they all share the control variables identified in table 1 and summarized in table 3. If a variable is not present in a 
given tree, it can be interpreted as indicating that a particular variable was not key in defining subsets of the 
population for which the treatment varied in efficacy; however, the variable may still be important in mediating the 
impact in a single way across the entire population.  Additionally, variables that are located in earlier splits in the 
tree tend to be more robust in terms of their importance in driving heterogeneity. 

Not all observations were included in the Causal Tree analyses.  The primary reason for observation 
removal was due to implementation date: in order to establish reasonable outcome measurements, the analysis was 
limited to projects that started in 2012 or earlier.  Recognizing that even with this limitation significant variation can 
be expected based on the number of years a project has had to make an impact, we further control for the amount of 
time that elapsed between the measurement of outcome and the year of implementation.  
 
 
 
 
 
 



Table 4. Propensity Model Results 

 
 

A single propensity model was fit which describes the likelihood of treatment as measured by the covariate 
information, and is presented in table 4. This model was fit using a logistic regression, in which the response 
variable was a binary (GEF project presence or absence).  While all variables are important in their role as controls 
in later stages of this analysis (see equation 3), of note is the significant relationship between the average minimum 
and maximum temperature with an increased likelihood of site selection, and a relationship between average 
temperature and a decreased probability of selection.  Further, spatial patterns seem to play a role in site selection as 
evidenced by a significant relationship with longitude.  Table 5 presents the pre- and post-matching difference 
between treatment and control groups along each ancillary variable, following a nearest neighbor matching strategy 
using the calculated propensity scores. 

    
  



Table 5. Difference in GEF project LD locations and eligible locations at which no LD activities occurred  before 
and after matching. 

  
 
Following the indicators suggested in the monitoring framework of the UNCCD for measuring land 

degradation (UNCCD 2015), three different metrics are used to ascertain the impact of GEF Land Degradation 
projects - Vegetation Density, Forest Cover, and Forest Fragmentation.  Across the entire globe, GEF LD projects 
(a) increased NDVI by approximately 0.03 (relative to an average NDVI of 0.55), (b) reduced forest loss by 1.3% 
(relative to a global mean of 2.4% forest loss in all areas), and (c) increased the average size of forest patches by 
0.25 kilometers (relative to a global mean of 7.3 square kilometers).  We find that while the impact of GEF projects 
has been positive, there is considerable heterogeneity in impacts across different geographic contexts.  Key finding 
for Vegetation Density included indications that projects in closer proximity to urban areas tended to be less 
effective; a minimum time lag of 5.5 years was an important threshold for determining impact in some contexts 
(with some geographic locations requiring 7.5 years), and a tendency for areas with poorer initial conditions to 
improve to a greater degree.  When Forest Cover was examined, it was found that a 4.5 year lag time was influential 
in determining effectivity.  In the case of Fragmentation, it was found that the initial state of fragmentation - i.e., the 
pre-trend average - was a major factor in determining the heterogeneity in GEF project impacts.  
 

The results of the causal tree analysis for NDVI can be seen in figure 6, and an online interactive view of 
these results can be found at http://labs.aiddata.org/GEF/treeBrowser/.   In these results, we find that in aggregate 
GEF LD projects had a small, but positive impact on NDVI - specifically increasing NDVI by approximately 0.03 
(relative to an average NDVI of 0.55).  In addition to this aggregate finding, there are a number of findings in regard 
to the factors that mediated GEF LD impacts: 

● In general, projects located in closer proximity to Urban areas tended to be less effective 
than those located farther away. 

● The period of time after project implementation was meaningful, with evidence 
suggesting that a minimum 5.5-year time lag is an important threshold for determining 
the degree of impact in some contexts; the maximum time lag found to be important was 
7.5 years. 

https://paperpile.com/c/NlzFcx/mK0B


● While there is limited evidence of robustness, the analysis in this tree suggests that in 
limited contexts multifocal projects lead to improved outcomes. 

● In some contexts, areas with poorer initial conditions (i.e., lower NDVI) saw greater 
improvement due to GEF LD projects. 

● Environmental (slope, elevation, temperature, precipitation) and social characteristics 
(pop density, urban distance) all proved important in mediating the impact of GEF LD 
projects. 

 

 
Figure 6. A Causal Tree representing impacts of GEF LD Projects on Vegetation Density (for easier viewing, an 

online application is available at http://labs.aiddata.org/GEF/treeBrowser/). 
 

Figure 7 shows the Causal Tree describing the impact of GEF projects on forest cover, and an interactive 
tree can be browsed at http://labs.aiddata.org/GEF/treeBrowser/.  Each terminal node value represents the percent of 
tree cover loss that is attributable to GEF LD projects - i.e., a negative value indicates a GEF project slowed the rate 
of loss, while a positive value indicates it accelerated the rate of loss.  As in the case of NDVI, globally there is a 
small but normatively positive impact attributable to GEF projects, which reduced forest loss by 1.3% (relative to a 
global mean of 2.4% forest loss in all areas).  Key findings included: 

http://labs.aiddata.org/GEF/treeBrowser/


● Evidence that projects with greater than 4.5 years of time since implementation had a 
stronger slowing effect on deforestation than more recent projects. 

● Population density is a key factor driving heterogeneity in GEF project impacts, but 
relatively few GEF projects fell into locations with extremely low population densities 
(less than one individual per square km). 

● There is some, limited evidence that GEF projects closer to urban areas were slightly 
more successful in mitigating forest cover losses in some geographic areas. 

 
Figure 7. A Causal Tree representing impacts of GEF LD Projects on forest land cover (for easier viewing, an online 

application is available at http://labs.aiddata.org/GEF/treeBrowser/). 
 

Figure 8 shows the Causal Tree describing the impact of GEF projects on forest fragmentation - 
specifically, the average forest patch size in 2014. This tree can also be viewed online at 
http://labs.aiddata.org/GEF/treeBrowser/.  In this case, positive values indicate an increase in patch size as a product 
of a GEF project.  Globally, this analysis suggests that GEF projects positively contributed to the patch size of 
forests on average, but with more significant heterogeneity in impacts when compared to the other two indicators 
examined - i.e., many projects had negative or neutral impacts.  On average, GEF projects increased the average size 
of forest patches by 0.25 kilometers (relative to a global mean of 7.3 square kilometers).  Unmeasured geographic 
factors - or, strong spillover effects - tended to have a large impact in the case of forest fragmentation, with the 
geographic latitude and longitude of a project being a consistent driver of relative efficacy of projects.  GEF projects 
were also heavily influenced by the initial state of forest fragmentation - i.e., the pre-trend of average forest size is a 
major factor in determining the heterogeneity in GEF project impacts.  
 

http://labs.aiddata.org/GEF/treeBrowser/
http://labs.aiddata.org/GEF/treeBrowser/


 
Figure 8. A Causal Tree representing impacts of GEF LD Projects on forest fragmentation (for easier viewing, an 

online application is available at http://labs.aiddata.org/GEF/treeBrowser/). 
 

At the continental scale, there is also notable spatial variation in the impact of GEF projects.  Table 6 
describes this variation, which is generally reflective of the causal findings.  Eastern Europe was the only region 
with universally negative findings; it also had one of the fewest number of high-precision GEF projects (3), limiting 
the interpretation of this finding.  The majority of project locations were located in Africa and Asia; these had 
generally positive impacts on average excepting in the case of fragmentation.  LAC, North and South America, and 
Oceania all had positive trends along all three indicators.  
 
Table 6. Regional variation in GEF LD project impacts on indicators examined in this analysis.  LAC indicates Latin 
America and the Caribbean.  Red highlights indicate a negative result for GEF projects (i.e., increased 
deforestation); green highlights indicate a positive results for GEF projects (i.e., decreased deforestation). 
Significance is not calculated on a per-region basis due to a highly variable N across regions.  Because geographic 
location was the primary driver of fragmentation estimates, some proximate regions with low Ns have identical 
impact estimates. 

 Average change attributable to GEF project Locations 

Geographic Region  
(Total N) 

Rate of Forest 
Loss 

Vegetative Productivity 
(NDVI) 

Fragmentation (Mean 
Patch Size in Sq.Km.) 

Africa (563) -.009274 0.01756905  -2.312 

Asia (331) -.022815 0.02733678 -.1178 

Eastern Europe (3)  .002316 -0.01528436 -.0577 

Europe (3) -.008403 -0.04980041 -.0577 

http://labs.aiddata.org/GEF/treeBrowser/


LAC (3) -.028891 0.28456991 98.66 

North America (90) -.024235 0.00435723 98.66 

Oceania (56)  -.010149 0.28456991 .2226 

South America (57)  -.001783 0.02748642  46.71 

 

Discussion 
While this report provides evidence that, on average, GEF projects have mitigated or reversed negative LD 

processes, we also note the significant heterogeneity in these findings.  We emphasize this heterogeneity to highlight 
the many opportunities for improvement which still exist by learning why and where GEF LD projects are leading to 
strong outcomes.  These heterogeneities were found over both time - with project impacts being variable on a 
year-by-year basis - as well as space.  As more observations are made available, we anticipate further drivers of 
heterogeneity in project impact could be observed (i.e., geopolitical issues; macro-economic trends). 

The use of propensity score matching techniques to examine the causal effects of an intervention (i.e., 
international aid; a new business process; a new website design) has it's roots in econometric research from the early 
1980s (Rosenbaum 1983). Since their introduction, propensity matching methods have been used for everything 
from better understanding customer retention and loyalty (Xerox, 2004), to the testing of new medical drugs (see 
Radiol 2015), to understanding supply chain dynamics (Falkowski 2009), and have been used extensively by 
researchers and practitioners seeking to understand the impact of aid (i.e. Gundersen and Sara 2016; Mensah et al. 
2010).  Most recently, these methods have become popular for testing websites such as Ebay, Facebook, and many 
more to establish and test optimal website designs (Taddy 2014; Backshy 2014; Briggs 2007).  Practitioners have 
constantly refined matching approaches to understand causality, and the most recent wave of innovation has 
centered around heterogeneous impact effects - i.e., how an impact might vary across different geographic areas or 
groups of individuals (Athey and Imbens 2015). This is coupled with a push from geographic information scientists 
and practitioners to apply these approaches to geographic data to more cost-effectively ascertain environmental 
impacts, as well as considerable increases in the quality of satellite imagery available (i.e., Hansen et al. 2014).  For 
example, using satellite and other geo-referenced data, propensity score matching and difference-in-difference 
approaches have been used to evaluate the impact of World Bank projects on forest change in key biodiversity areas 
(Buchanan et al. 2016), indigenous communities’ land rights on deforestation in Brazil (BenYishay et al. 2016), and 
land titling and land management programs in Ecuador (Buntaine et al. 2015). 

Here, we advance the state of the art by applying a joint econometric and machine learning technique 
(specifically, Causal Trees) to examine how the impacts of GEF LD projects vary across geography.  By examining 
the heterogeneity in impacts - rather than exclusively estimating overall effects - we show that (a) it is feasible to 
conduct global-scope, top-down analyses, as traditional methods for IE require pre-specification of possible factors 
driving heterogeneity, and (b) it is possible to distinguish between sources of positive and negative impacts.  

We additionally employ state-of-the-art satellite imagery to detect changes as fine as 30 meters - a key 
factor when fragmentation and precise measurement of tree cover is of interest.  By using GIS to couple this satellite 
imagery with a wide variety of other, globally available datasets (see table 1), we are able to provide geographic, 
contextual information that enables the identification of counterfactual cases.  Further, by leveraging features of 
geographic variance itself - i.e., the trend that locations that are closer together tend to be more similar along 
unmeasured variables - we argue that this approach can mitigate - though not completely remove - many challenges 
associated with omitted variable biases. 

 

https://faculty-gsb.stanford.edu/athey/documents/HeterogeneousEffects.pdf
http://aiddata.org/sites/default/files/wps2_titling_community_land_to_prevent_deforestation.pdf
http://erae.oxfordjournals.org/content/early/2011/09/27/erae.jbr046.full
http://amstat.tandfonline.com/doi/abs/10.1080/07350015.2016.1172013
https://www.internetretailer.com/2007/09/19/office-depot-has-multiple-uses-for-a-b-testing
http://aiddata.org/sites/default/files/wps22_indigenous_land_rights_and_deforestation.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347264/
https://research.facebook.com/publications/social-influence-in-social-advertising-evidence-from-field-experiments/
https://paperpile.com/c/NlzFcx/IBk8+wPWy/?prefix=i.e.,
http://biomet.oxfordjournals.org/content/70/1/41.short
https://www.internetretailer.com/2007/09/19/office-depot-has-multiple-uses-for-a-b-testing
http://aiddata.org/sites/default/files/wps20_world_bank_biodiversity_0.pdf
https://paperpile.com/c/NlzFcx/IBk8+wPWy/?prefix=i.e.,
https://www.xerox.com/downloads/wpaper/x/xerox_white_paper_fund.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347264/
https://research.facebook.com/publications/social-influence-in-social-advertising-evidence-from-field-experiments/


This study has a number of remaining uncertainties and limitations which could be resolved through future 
work.  First and foremost, this analysis is top-down, using only project information which is available at a global 
scale.  While matching based on geography and geographic patterns can strongly mitigated omitted variable biases 
(i.e., by selecting treatment and control sites close together, and thus likely to experience similar conditions), 
nuanced, project-scale factors could still confound the results present here.  We argue that, despite this limitation, 
the analysis presented here can be powerful in (a) identifying possible “bright spots” and “warning signs” at a 
relatively low cost; (b) identifying the geographic contexts in which GEF LD projects are most successful; and (c) 
providing strategic guidance as to the global and regional effectiveness of GEF LD projects.  We strongly caution 
against using the information - or approach - detailed in this report to drive project-location level decisionmaking 
without coupled, “bottom-up” analyses. 

The scope across which GEF LD projects have impact is - frequently - unknown.  Because limited 
geographic information has traditionally been collected on the exact geographic boundaries across which an 
intervention is performed, the underlying data used in this and similar analyses is point-based (i.e., a latitude and 
longitude coordinate).  Because LD projects occur in a diffuse manner, an assumption as to the geographic extent a 
LD project might have an impact across is necessary lacking exact, geometric representations of the area across 
which project impact is anticipated.  While we use a 25km buffer around each intervention (and examine hydrosheds 
as a robustness check), the collection of more precise geographic boundary information at the time of project 
implementation could result in more accurate impact estimates. 

Conclusion 
The findings of this report suggest that - in aggregate - GEF projects have had a positive impact on 

indicators of Land Degradation proposed by the UNCCD - specifically vegetative productivity (measured by NDVI) 
and forest cover (measured directly and by mean patch size).  While these impacts vary substantially over space and 
time, we provide evidence that the GEF has contributed to increasing the total amount of carbon sequestered by 
forest cover and related biophysical processes.  

Although examining the causal impact of international aid on environmental outcomes has been a central 
goal of many communities, there has been a limited engagement using spatially-explicit, geocoded aid information 
due to limitations in both data and methods (Corrado and Fingleton 2012; Athey and Imbens 2015a).  These 
methodological limitations primarily stem from distinctions between modeling efforts seeking to predict 
relationships commonly taught and accepted by the geographic community (i.e., spatial regression or classification 
trees), and efforts which seek to establish causal relationships similarly taught and accepted by the economics 
community (i.e., propensity score matching or difference- in -difference modeling).  Recent efforts have been 
undertaken to merge these disciplinary approaches (Drukker, Peter, and Prucha 2013; Buntaine, Hamilton, and 
Marco 2015b; D. Runfola et al. 2016), of which this report provides another example.  

The methodology detailed in this report goes beyond these examples by providing an approach to capturing 
heterogeneity in impact effects - i.e., how GEF projects may vary in impact across different countries, regions, 
climate regimes, or human factors.   This approach to learning based on historic GEF project implementations can 
additionally be flexibly applied to predict the potential impact of future projects (alongside concomitant 
uncertainties).  As the cost of this style of analysis is lower than traditional impact evaluation, and enables the use of 
historic information, we believe it represents a screening step practitioners could take before project implementation.  
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Appendix I: Definitions 

Defining Vegetation Productivity 
There are many different approaches to approximating vegetation on a global scale, and satellites have been 

taking imagery that can be used for this purpose for over three decades.  Of these approaches, the most frequently 
used - and applied in this study - is the Normalized Difference Vegetation Index (NDVI).  The NDVI is a metric that 
has been used since the early 1970s, and is one of the simplest and most frequently used approaches to 
approximating vegetative biomass; further, it is recommended as an indicator by the GEF STAP (STAP 2014). 
NDVI measures the relative absorption and reflectance of red and near-infrared light from plants to quantify 
vegetation on a scale of -1 to 1, with vegetated areas falling between ~0.2 and 1. The reflectance by chlorophyll is 
correlated with plant health, and multiple studies have illustrated that it is generally also correlated with plant 
biomass. In other words, healthy vegetation and high plant biomass tend to result in high NDVI values (Dunbar 
2009).  Using NDVI as an outcome measure has a number of other benefits, including the long and consistent time 
periods for which it has been calculated.  While the NDVI does have a number of challenges - including a 
propensity to saturate over densely vegetated regions, the potential for atmospheric noise (including clouds) to 
incorrectly offset values, and reflectances from bright soils providing misleading estimates - the popularity of this 
measurement has led to a number of improvements over time to offset many of these errors.  This is especially true 
of measurements from longer-term satellite records, such as those produced from MODIS and AVHRR (NASA 
2015). 

Defining Land Cover Change 
Understanding the relationships between “process and pattern” - i.e., the links between drivers and 

observations of land cover change - has long been a focus of practitioners (Lambin et al., 2001; Liverman, 1998; 
Meyer and Turner, 1996; Nagendra et al., 2004; Turner et al., 2003).  Land cover change has major implications for 
a broad range of phenomena, including the sustainability of human development, biogeochemical cycling, and levels 
of greenhouse gasses (Turner et al., 1995; UN-REDD, 2010). Investigating the many factors which influence land 
cover / use provides an avenue through which the human-environment interface can be better understood, but recent 
research has emphasized the lack of understanding of how anthropogenic processes influence land change 
(Nagendra et al., 2004). The impacts of land use / cover change on the vulnerability and sustainability of 
human-dominated landscapes is just beginning to be analyzed, and improving this understanding is a major goal of 
parties interested in understanding the consequences of land use change (Foley et al., 2005; GLP, 2010).  

Both the geographic and development economics communities have sought to understand linkages between 
international development and land cover change, but often using different approaches and vocabulary.  Within the 
geographic community, limited attention has been given to causal methodologies (including matching and 
difference-in-difference models), but rather focused on the (a) ability to accurately measure land cover change using 
satellite imagery (i.e., Borak, Lambin, and Strahler 2000; Strahler, Moody, and Lambin, n.d.; Christman et al. 2015; 
Rogan et al. 2003; Schwert et al. 2013), (b) impacts of spatial autocorrelation on model estimates (Miller, Arun, and 
Timmons Roberts 2012; Waldron et al. 2013), and (c) methods for predicting the impact(s) (and related 
uncertainties) of international aid on land change (Laurance et al. 2002; D. M. Runfola and Pontius 2013; van 
Asselen and Verburg 2013).  Conversely, the development economics community has focused on the application of 
matching (Nelson and Chomitz 2011) and difference-in-difference (Pfaff 1999; Alix-Garcia, Shapiro, and Sims 
2012; Nolte et al. 2013) techniques to establish evidence of causal relationships between international aid and land 
cover change - methods that follow similar approaches to clinical trials with treatment and control groups.  
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To capture land cover change in this analysis, we leverage an analysis performed by Hansen et al. (2013), 
in which LandSat imagery was fused with a number of other sources to capture 30-meter resolution, yearly estimates 
of tree cover loss.  This land cover change analysis is widely leveraged to capture trends in deforestation, and 
represents one of the highest-resolution efforts for such measurements ever conducted.  Further, as a global analysis, 
this product enables a precise calculation of both (a) tree cover in the year 2000, and (b) loss from 2000-2013 for 
every GEF project location. 

Defining Forest Fragmentation 
Classical forest fragmentation occurs when forest patches become smaller and more isolated than those              

in an undisturbed landscape, a process which can be driven by both natural and anthropogenic causes (Wulder et al.                   
2009). Academic and policy literature has repeatedly shown that fragmentation can have significant environmental              
implications (Mingshi et al. 2010; Garcia et al. 2005; Riitters et al. 2012). These implications include negative                 
impacts on the biodiversity of an area (Hanski 2005, Zuidema, Sayer, & Dijkman 1996; Kolb & Diekmann 2005),                  
negative effects on carbon sequestration (Diaz, Hector & Wardle 2009; Matthews, O’Connor, & Plantinga 2002), as                
well as modified risks of natural disasters such as fire (CITE). While there are many ways to describe                  
fragmentation, in this analysis we examine the average patch size within the area of influence of GEF projects.. 

Defining Carbon Stocks and Sequestration 
Forests contribute significantly to carbon sequestration through holding large carbon stocks. The            

combination of field-based estimates and remote sensing techniques has become the primary method of examining               
carbon stocks and carbon sequestration (Asner et al. 2010; Maselli et al. 2006; Muukkonen and Heiskanen 2005)                 
because of difficulties with solely field-based estimates (Gibbs et al. 2007; Houghton 2005; Saatchi et al. 2007).                 
Carbon stocks cannot be observed directly from satellite imagery; however, they can be estimated through               
examining factors associated with carbon stocks, particularly vegetation biomass. NDVI is one of the most widely                
used vegetation indices to estimate carbon stocks. 

To date, empirical studies employing remote sensing to estimate carbon storage have done so at a local or                  
country level and have shown that NDVI can strongly predict carbon stocks. For example, Myeong, Nowak, and                 
Duggin (2006) estimate carbon storage among urban trees in Syracuse, New York, and find that NDVI explains 67                  
percent of the variation in field-based model estimates of carbon storage. Widayati, Ekadinata, and Syam (2005)                
examine the relation between carbon stocks and NDVI in Indonesia, motivated by the need to evaluate the                 
effectiveness of community-based forest management projects in reducing deforestation. They found that NDVI             
explains 52.8 percent of the variation in carbon density. Wylie et al. (2003) use remote sensing to predict CO2                   
carbon fluxes in a sagebrush-steppe ecosystem in northeastern Idaho, finding that NDVI explains 79 percent of the                 
variation in carbon flux, and including evapotranspiration as a predictor variable increased explanatory power to 82                
percent. Gang et al. (2013) use NDVI, in combination with temperature and precipitation data, to estimate carbon                 
stocks in the Xilingol grasslands in northern China, predicting carbon stocks with a 92.5 percent accuracy. For other                  
studies that use NDVI to model carbon stocks, see Gilmanov et al. (2004) for estimates in Kazakhstan; Hunt et al.                    
(2002, 2004) for estimates in Wyoming; Tan et al. (2007) and Piao et al. (2005) for estimates across China; Kanniah,                    
Muhamad, and Kang (2014) and Hamdan et al. (2013) for estimates in Malaysia; and Verhegghen et al. (2012) for                   
estimates of the Congo Basin. 
Some researchers have moved beyond the local level to estimate global carbon stocks. Saatchi et al. (2011) estimate                  
forest carbon stocks across 2.5 billion hectares of forests, covering Africa, Asia, and South America. They rely on                  
14 remotely sensed variables (including NDVI) to estimate carbon stocks and field samples from 493 field sites to                  
develop the model. They examine the predictive power of the 14 variables across geographic regions, where they                 
find NDVI metrics explain most of the variation in carbon stocks in low biomass density forests. Other studies                  
estimate carbon stocks around the world or at regional levels relying on remotely sensed data beyond NDVI. For                  



example, see Baccini et al. (2012) and Ruesch and Gibbs (2008) for global estimates; Saatchi et al. (2007) for                   
estimates of the Brazilian Amazon; Baccini et al. (2008), Brown and Gaston (1996), and Gibbs and Brown (2007a)                  
for tropical Africa; and Brown, Iverson, and Prasad (2001) and Gibbs and Brown (2007b) for Southeast Asia.                 
Further, some researchers have found that the relationships between NDVI, forest cover and carbon sequestration               
can be further permuted by forest fragmentation (Diaz, Hector & Wardle 2009; Matthews, O’Connor, & Plantinga                
2002). 
 

Appendix II: Methods 

Data Integration 
Many of the datasets used in this analysis are collected at different spatial scales, necessitating an additional 

step of integration so that all observations can be analyzed at the scale of GEF projects (in this case, examining a 
10km x 10km region around each project).  To conduct this integration, we use the piecewise approximation 
procedure detailed in Goodchild et al. (1993): 

eq. 6 
where t is an index for the zone one is aggregating to (the GEF project area of interest), s is an index for the set of 
zones one is aggregating from (i.e., a satellite pixels measuring NDVI), S is the maximum index for all zones s,  
represents the value of interest at source zone s ,  is the area of overlap between the two zones,  is the area of 
the zone one is aggregating from, and  is the estimated value for the target zone. In our application, this procedure 
weights each pixel of each dataset according to its overlap with each GEF project.  

Causal Model 
Classification and Regression Tree approaches have been commonly employed over the last two decades to aid in 
the classification of remotely sensed imagery (Friedl and Brodley 1997; McIver and Friedl 2002; Gamba and Herold 
2009).   Here, we employ Causal Trees - a novel version of a CART which enables causal inferential analyses. 
Causal Trees are implemented in a multiple step process, detailed below but simply summarized as (a) deriving a 
metric which indicates similarity between treatment and control groups; (b) using this metric to match pairs of 
treatment and control units via a tree; (c) contrasting the outcome of treated units to control units within every 
terminal node of the tree.  Figure 4 shows an example drawn from exploratory research in which a Causal Tree is 
applied to a limited subset of international aid, examining aid’s impact on a maximum observed NDVI value.  This 
figure serves as an illustrative example of the outputs of Causal Tree based approaches to identifying how impact 
effects may differ across a dataset.  Unlike traditional econometric approaches in which interaction terms must be 
pre-specified to estimate differential impact effects, here clusters of similar treatment and control units are identified 
dynamically.  Further, by including geographic factors in these trees (i.e., latitude and longitude), many unobserved 
geographic characteristics can be captured.  As in a traditional econometric analysis in which variables can be 
identified as statistically significant, here variables which are significant (defined as the variables which describe the 
most variance in the data; see eq. 4) are represented in the tree.  All variables are controlled for through the 
propensity adjustment of the outcome (see eq. 3). 

The primary distinction between Causal Trees and more traditional tree-based classifiers lies in the criterion 
along which splits in the tree are selected.  Consider a data set with n independently and identically distributed units 
with , and for each unit a vector of relevant covariates are measured.  In a simplified case where all 
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things other than treatment are being constant, to estimate a causal effect for each geographic location i we can use 
the Rubin causal model (Rubin 1997) and consider the treatment effect as being equal to: 

eq. 7 
where  is an indicator of if a unit of observation i received aid (1) or did not (0).  Following this simplified 
model, we define the expected heterogeneous causal effect for any set of units as (Athey and Imbens 2015b): 

  eq. 8 

Athey and Imbens show that one can estimate the causal effect as  where the transformed 
outcome   is defined as: 

  eq. 9 

and the propensity score function  is defined as .  Several approaches to estimate 

the propensity score can be selected (Rosenbaum and Rubin 1983; Pan and Bai 2015) - here, we  estimate  

using logistic regression.  Once the propensity score and  have been estimated, many authors (Su et al. 2009; 
Athey and Imbens 2015; Wagner and Athey 2015; Denil et al. 2014; Meinhausen 2016; Biau 2012; Wagner et al. 
2014) have illustrated that classification and regression trees can be used to isolate treatment effects within sets of 
similar units.  These trees seek to classify units of observation into clusters that are similar along covariate axes, 
following different splitting and optimization rules.  

Using the propensity score, Causal Tree approaches derive a a transformed outcome variable, , and use 
this to generate tree splits instead of (the traditionally used) . This transformed outcome is calculated following 
eq. 3.  The CT replaces the traditional MSE optimization criterion in trees by seeking to minimize the sum of 

 in each terminal node, where  represents the estimated average treatment impact within a given 
node, i.e.: 

eq. 10 
This new error term is then used to split the tree in a way identical to traditional regression trees, and 

provides a tree which increases the similarity of control and treated units within each node, as well as node-specific 
estimates of impacts.  

 

Appendix III: Geocoding International Aid 
This project leveraged the AidData development finance and international aid geocoding methodology.  In 

2010, AidData developed a methodology for georeferencing development projects that IATI later revised and 
adopted as its global reporting standard.  Leveraging a team of trained geocoders, the geocoding methodology and 
online toolkit relies on a double-blind coding system, where two experts employ a defined hierarchy of geographic 
terms and independently assign uniform latitude and longitude coordinates, precision codes, and standardized place 
names to each geographic feature. If the two code rounds disagree, the project is moved into an arbitration round 
where a geocoding project manager reconciles the codes to assign a master set of geocodes for all of the locations 
described in the available project documentation. This approach also captures geographic information at several 
levels—coordinate, city, and administrative divisions—for each location, thereby allowing the data to be visualized 
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and analyzed in different ways depending upon the geographic unit of interest.  Once geographic features are 
assigned coordinates, coders specify a location class ranging from 1 to 4 for categories including administrative 
regions or topographical features along with a location type specifying the exact feature (e.g., airport, second order 
administrative zone, etc.). Coders then determine the location’s geographic exactness value of either 1 (exact) or 2 
(approximate). 

AidData performs many procedures to ensure data quality, including de-duplication of projects and 
locations, correcting logical inconsistencies (e.g. making sure project start and end dates are in proper order), finding 
and correcting field and data type mismatches, correcting and aligning geocodes and project locations within country 
and administrative boundaries, validating place names and correcting gazetteer inconsistencies, deflating financial 
values to constant dollars across projects and years (where appropriate), strict version control of intermediate and 
draft data products, semantic versioning to delineate major and minor versions of various geocoded datasets, and 
final review by a multidisciplinary working group. 

 

Appendix IV: Robustness Checks 
In order to test the robustness of the results presented in this document, two different approaches were followed. 
First, a random forest (RF) implementation of the Causal Tree (CT) approach was implemented.  Second, the 
analysis was repeated using the traditional Causal Tree approach, but using the watershed in which each unit fell as 
the unit of observation (i.e., watersheds with no GEF projects contained within them were matched to watersheds 
that contained GEF projects).  The RF-CT approach takes a different approach to uncertainty than a traditional 
Causal Tree.  In the Random Forest, a large number of trees (in this case, 10,000) are fit, each time fitting using a 
different subset of the data.  This approach provides two advantages.  First, it allows for an estimate of the 
importance of different variables across trees - i.e., it can be established which variables seem to drive heterogeneity 
in the impacts of GEF projects.  Second, it provides a range of possible values that could be estimated for each GEF 
project, given the potential for different matches across different subsets of the data.  From these two point of 
evidence, it is possible to provide insight into the relative certainty of claims for any given observation, as well as 
the structure of the tree found in the traditional CT approach.  The primary drawback of the RF-CT is that it does not 
provide a single tree for interpretation (as in the above CT approach), thus limiting potential insights regarding the 
exact contexts in which projects succeed and fail. 

 



Figure 14. The result of a random forest for one GEF observation.  Each of 1000 iterations are plotted to illustrate 
how metrics of uncertainty are generated. 

 
Figure 14 illustrates an example of how uncertainty due to tree construction can be captured for each 

individual GEF project location.  We can use this distribution to calculate the percent of observations within - for 
example - 1 standard deviation of the mean.  While this cannot be interpreted as a statistical significance (due to the 
lack of parametric assumptions in the underlying models and distributions, as well as differential aims of the tests), 
if a high percent of observations fall in this area, we illustrate that our findings are generally robust with regard to 
the shape of the tree.  This analysis is conducted for each of the three focal areas, as summarized in table 7. 

 
Table 7. The percent of observations that fall within one and two standard deviations of the estimated mean.  Higher 
values indicate more robust findings. 
 

 
Outcome Measure 

Percent of observations that fall within 

1 Standard Deviation of the Mean 2 Standard Deviations of the Estimate 

Forest Cover 90.5% 96.3% 

Vegetation Density (NDVI) 80.1% 93.3% 

Forest Fragmentation 84.3% 94.8% 

 
As table 7 illustrates, the most robust results were found in the estimates of Forest Cover, with 90.5% of 

observations (across all GEF projects estimated) falling within 1 standard deviation of the mean.  Both Vegetation 
Density (NDVI) and forest fragmentation had lower overall robustness, but both have robustness scores at 1 
standard deviation greater than 80%.  At the 2 standard deviation mark, all models had a rate of 93% or higher.  In 
practice, this table suggests that while forest cover had the highest robustness, all three models can be described as 
robust with regard to the shape of the trees.  

Table 8 provides information on the relative importance of the top 10 variables across each of the random 
forests.  For example, if a variable appears in many trees at a relatively high position, it will be rated highly in this 
table; conversely if it does not frequently appear or is low in the tree it is in a relatively low position.  These tables 
can be interpreted to better understand the robustness of the shape of the trees presented in figures 6-8.  
 
Table 8. The relative importance of variables within each random forest.  The top 10 occurring variables are 
presented here, weighted by the location they appear in the tree (higher indicates more weight) as well as the number 
of occurrences across all trees. 

 
Variable Rank  

(1 = Most 
Influential) 

Relative Occurrence in Random Forest (Purity) 

Land Cover Fragmentation NDVI 

1 Pre-trend Max NDVI  Latitude Latitude 

2 Year Year 2000 Tree Cover 

3 Pre-trend Avg Air Temp Post Implementation Time Pre-trend Max NDVI  



4 Latitude Slope Pre-trend Min Temp 

5 Post Implementation Time Pre-level Min Air Temp Pre-trend Max Temp 

6 Slope Pre-level Avg Air Temp Elevation 

7 Longitude 2000 Tree Cover Year 

8 Urban Accessibility Pre-trend Avg Air Temp Urban Accessibility 

9 Population Density (2000) Longitude Pre-trend Min Precip 

10 Pre-trend Average NDVI Elevation Post Implementation Time 

11+ All other variables All other variables All other variables 

 
Table 8 illustrates the robustness of the shape of the trees - specifically, if claims regarding a particular split can be 
determined to be robust.  Of note is that post-implementation time appears in all three models as being an important 
factor in distinguishing GEF project impacts.  Additional variables that are important across multiple outcome 
measures included the year of implementation (suggesting a difference in the effectiveness of projects over time), 
geographic factors (latitude and longitude), and a variety of physical and environmental characteristics. 
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