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Abstract 

This study investigates regression model specification issues with respect to the 

consideration of autocorrelation effects and/or relationship heterogeneity effects with 

spatio-temporal panel data. Models include: simultaneous autoregressive regression, 

geographically weighted regression and their corresponding extensions to the space-time 

case. This study focuses on the exploration and specification of such models and associated 

identification issues, and how they relate to ultimate goals of prediction and inference. As 

a case study, 16 years of livestock (cattle) population data in Mongolia are informed by 

environmental, climatic, socio-economic and agricultural covariates. 
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1. Introduction 

Often when choosing a regression to model spatio-temporal data, it is not clear what, if any, spatial 

and/or temporal dependencies or relationships should be incorporated. Decisions also depend on 

sample information and its configuration, both in space and in time. Given that this study’s data is 

relatively information-rich in the spatial dimension (341 contiguous area units), but relatively 

information-poor in the temporal dimension (16 consecutive years), there are a distinct class of 

methodological approaches to choose from. 

One approach is to consider each year in turn and implicitly assume temporal independence, with 16 

separate regressions.  If this is the case, model decisions can then be taken on whether, for example, 

the focus should be on regressions with spatial autocorrelation effects, say with a simultaneous 

autoregressive regression (SAR) (Anselin 1988), or regressions with spatial heterogeneity effects with 

respect to data relationships, say with a geographically weighted regression (GWR) (Brunsdon et al. 

1996)? Furthermore, should we try to capture both effects, for example an autoregressive GWR model 

(GWR-SAR) (Brunsdon et al. 1998)?  It also possible to link (Griffith 2008), or fuse these two spatial 

effects together (Assunção 2003) – regression models that are commonly specified within a Bayesian 

inferential framework. Furthermore, what should be done for spatial effects that are likely to vary at 

different spatial scales, which in turn can be from an error variance (e.g. Milne et al. 2010) or 

relationship viewpoint (Lu et al. 2017; Murakami et al. 2017)? 

Difficulties arise in that it is not easy to determine which effects are more important, where 

autocorrelation and heterogeneity are commonly strongly interrelated causing problematic 

identification issues and analytical confounders (Armstrong 1984; Anselin 1990), which in turn, tend 
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to depend on the spatial characteristics of the covariate data set. In some instances, it can be 

pragmatic to proceed with regressions with no spatial effects, but possibly with the coordinates as 

spatial covariates, say; or alternatively seek for additional (or re-observed) covariates such that any 

observed spatial effects are removed by their presence (Cressie and Chan 1989). 

Of course assuming temporal independence is naïve, and as a result, each annual regression is likely 

to be missing valuable time-dependent information.  However, all of the specification difficulties 

stated above, are now present in the spatio-temporal domain. For example, should we focus on 

autocorrelations effects, say with a spatial panel regression (SPR) (Anselin et al. 2008; Millo and Piras 

2012), or focus on heterogeneity effects, say with a geographical and temporal weighted regression 

(GTWR) (e.g. Huang et al. 2010; Fotheringham et al. 2015).  Further still should we investigate a hybrid 

of both models, say with a geographically weighted panel regression (GWPR) (Yu 2010) or an 

autoregressive GTWR hybrid, call this GTWR-SAR, say (Wu et al. 2014). 

2. A case study: 16 years of cattle population data in Mongolia 

For demonstration, we analyse annual cattle population data for 341 soums (second-level 

administrative units) in Mongolia from 1990-2006 (as described in Tsutsumida et al. 2017), which are 

considered a function of the following four covariates: (i) annual mean normalised difference 

vegetation index (NDVI), (ii) annual mean rainfall (Rain), (iii) the number of households working with 

livestock (NH) and (iv) the number of reported cattle losses (Loss). 

 

Figure 1: The soum adjacencies used to construct the neighbourhood weight matrix in the Moran’s I 

test and the SAR model. 

2.1. Spatial regressions 

The first step in the analysis is to explore the data on a year by year basis for: (a) global correlations 

between the cattle (response) data and the four covariates; (b) significant spatial autocorrelation in 

the error term from a multiple linear regression (MLR) via Moran’s I; (c) evidence of spatial 

heterogeneity in data relationships via an automatically found bandwidth for a GWR fit (using an AIC 

approach); (d) global R-squared values for MLR, SAR and GWR models; and (e) global AIC values from 

MLR, SAR and GWR models. Exploratory analyses (b) and (c) look for evidence that contradicts the 

underlying assumptions of the (non-spatial) MLR model - in that the errors are assumed independent 

and that data relationships are assumed fixed across space, respectively. R-squared values provide a 
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handle of relative model fit with a prediction focus, whilst AIC values similarly account for model fit 

whilst penalising for model complexity. 

MLR is fitted using ordinary least squares, the SAR model chosen for this study accounts for spatial 

autocorrelation via the error term and is fitted using maximum likelihood, whilst GWR is fitted via a 

weighted least squares procedure. The SAR model and the Moran’s I test each account for spatial 

structure in the error term via the interactions between each pair of spatial units as captured by a 

spatial weights matrix derived from soum contiguity (Figure 1). Thus for MLR and SAR, single 

regressions are fitted, where the latter has an additional parameter which controls the degree of 

autocorrelation in the error term. Whereas for GWR, a series of local MLRs are calibrated at any 

location i  with observations near to i  given more influence than observations further away by 

weighting them via a distance-decay, kernel weighting function. The locations of the 341 observation 

points are taken as the centroids of the soums; and in this study, adaptive bi-square bandwidths are 

specified (given as a percentage). 

 

Figure 2: Top: Global relationships with cattle population, Moran’s I p-values for residuals from MLR 

fit, and GWR bandwidths. Bottom: R-squared and AIC values for MLR, SAR and GWR. 

Figure 2 shows an emergent picture of spatial structure amongst the data across the 16 years. The 

global correlations, suggest reasonable predictive power of cattle population, especially for covariates 

NDVI and NH. GWR bandwidths are typically around 10 to 24% of nearby data suggesting that the 

same relationships may vary across space and are not fixed.  For autocorrelation, all Moran’s I p-values 

are highly significant. Thus both spatial heterogeneity and spatial autocorrelation appear viable 

options when it comes to specifying each year’s regression model. Although, we don't actually know 

which spatial process best represents the yearly data, as these effects are strongly interrelated 

(Anselin 1990, p.204). The R-squared and AIC values clearly indicate that GWR will not only provide 

the best predictions of cattle population, but also provides the most parsimonious model. 
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Thus on balance, GWR appears the most promising model, although we have not as yet, investigated 

its inferential properties, where issues such as collinearity and multiple hypothesis testing also need 

to be assessed - issues that a SAR model is more easily adapted to cater for. Furthermore, to compete 

this initial year-on-year investigation, it may be of value to calibrate and fit hybrid GWR-SAR models, 

as proposed by Brunsdon et al. (1998). 

2.2. Spatio-temporal regressions 

The initial year-on-year investigations provide evidence for the suitability of both GWR and SAR to be 

extended to the space-time case, through GTWR and SPR models, respectively. We should also 

consider hybrids in GWPR and GTWR-SAR models. Outputs from all such spatial (fitted 16 times) and 

spatio-temporal models (fitted once only) can be assessed together, and Table 1 summarises their 

core properties. For inference, it is vital that temporal, spatial and spatio-temporal dependencies are 

accounted for, otherwise biased predictions, coefficient estimates and their standard errors will result.  

Thus each of the eight study models will tend to a certain bias according to their stated properties. 

Model Type 
Fixed 

coefficients? 

No. of 

coefficients 

Autocorrelation 

parameters? 

No. of autocor. 

parameters 

MLR spatial only yes 5 no 0 

SAR spatial only yes 5 yes 1 

GWR spatial only no 341 x 5 no 0 

GWR-SAR spatial only no 341 x 5 yes 341 

SPR spatio-temporal yes 5 yes 1 

GWPR spatio-temporal no 341 x 5 yes 341 

GTWR spatio-temporal no 16 x 341 x 5 no 0 

GTWR-SAR spatio-temporal no 16 x 341 x 5 yes 5456 

Table 1: Summary of model properties when applied to the case study data. 

So as to match the SAR model chosen for this study, which accounts for spatial autocorrelation via the 

error term, the GWR-SAR, SPR, GWPR and GTWR-SAR models are similarly specified. Thus we do not 

to consider lagged SAR-based models. SPR and GWPR use observations repeated over time, where in 

this case, the data are ‘balanced’ as the number of cross sectional observations is constant across the 

16 time periods. Given space limitations, we only present results for ‘in-sample’ predictions of cattle 

population in 2006 for MLR, SAR, GWR and GWR-SAR (Figure 3). Unsurprisingly, GWR-SAR provides 

the best fit. 

Observe that only the GTWR and GTWR-SAR models truly account for any temporal dependencies. In 

this respect, their specification can be highly involved where complications arise in that a suitable 

space-time metric is not immediately obvious. The concept of ‘nearness’ is also different in the 

temporal dimension to that intuitively assumed in the spatial dimension. Given these difficulties, 

details of the implementation of such models are presented in a sister paper to this one (Comber et 

al. 2017), but where the outputs of all eight study models are compared here. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 3: Fitted against observed values of Cattle in 2006 under a) the MLR, b) SAR, c) GWR, and d) 

GWR-SAR models. 
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3. Concluding remarks 

This study aims to provide guidance on regression specification with respect to autocorrelation effects 

and/or relationship heterogeneity effects with spatial panel data. Eight models are considered, four 

are purely spatial that need to be repeated at each time interval, whilst four are spatio-temporal that 

consider the spatial panel data as a whole. Models stem from either a SAR or GWR paradigm. 
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