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Abstract 

Deep learning has become very popular as a method to predict short-term traffic volumes 

on road networks, especially highway networks, based on real-time observation. Various 

studies have confirmed that the performance of deep learning in predicting traffic volumes 

is better than that of previous machine learning models and statistical models. Although it 

is natural to consider that the traffic conditions on road networks are highly dependent on 

network structures such as the connection relationship between roads, to date it is not clear 

whether the estimated parameters of neural networks are related to the proximities of roads 

in networks. This study was conducted with the objective of predicting traffic volumes in 

urban street networks, which are more complex than highway networks, and investigated 

the relation between proximity of streets and estimated weight parameters of a neural 

network. The results obtained confirm that the proximity of streets is significant in traffic 

volume prediction, although some streets have a strong relation with distant streets. 

Keywords: Deep Learning, Neural Network, Traffic Volume Prediction, Urban Street 

Network. 

 

1. Introduction 

Traffic congestion is a serious social issue, as it increases travel time and causes deterioration in the 

roadside environment. Consequently, various technologies, such as roadside devices and probe vehicles, 

have been utilised to observe real-time traffic conditions. With the development and diffusion of 

information and communications technology in recent years, short-term traffic condition prediction 

based on real-time observation has been gaining increased attention. 

One approach to traffic condition prediction is deep learning—a form of machine learning in which 

estimates are made via a multi-layer neural network model. Deep learning has been applied for the 

prediction of traffic volumes on highway networks in various studies. Yishen et al. (2015) and Yongxue 

et al. (2015) analysed the traffic volumes on a highway network using a neural network with a fully 

connected layer, and confirmed that the predictions by deep learning outperformed previous machine 

learning and statistical models. 

However, to date it is not clear whether the estimated parameters of neural networks represent the 

proximities of roads in road networks. Further, the traffic on urban street networks is more complex 

than that on highway networks. Many travel origins and destinations are located in urban areas, with 

traffic controlled by signals. The traffic condition on urban street networks may have strong locality; 

thus, it is crucial to consider the network structure when predicting traffic volumes on urban streets.  
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This study focused on prediction of the traffic volumes on urban area streets using deep learning, and 

investigated the relation between the proximity of streets in urban street networks and the estimated 

parameters of neural networks. In general, interpreting the meanings represented by the estimated 

parameters of neural networks is difficult, although Zeiler and Fergus (2014) has attempted 

interpretation of the estimated parameters of convolutional neural networks in image recognition. In 

this research, our aim is to extract the spatial structure of street networks, which is useful for traffic 

volume prediction, with the ultimate objective of improving the efficiency of learning processes and 

traffic volume prediction accuracy. 

This paper focuses on the estimated weight parameters of links between the input layer and the first 

hidden layer of a neural network and investigates the relationship between the estimated parameter 

values and the proximities of streets.  

2. Methodology 

We consider a simple traffic volume prediction problem. The input is the latest traffic volume data 

observed for each street in the target network in the given time interval, and the output is the predicted 

traffic volume of each street in the next time interval.  

We use a multi-layer neural network with two hidden layers, in which all neurons are connected to all 

neurons of former and latter layers (Figure 1). Table 1 shows the activation function of each layer; the 

loss function is the mean squared error (MSE).  

We analysed the relationship between the structure of the transformation weight matrix from the input 

layer to the first hidden layer (𝐖1) and the proximities of streets in the target street network. To evaluate 

the degree of influence of traffic volume on street i at the latest observation to the prediction of traffic 

volume on street j at the first hidden layer, we focused on element (j, i) of 𝐖1
′ 𝐖1, where 𝐖1

′ denotes 

the transpose of matrix 𝐖1. 

 

Figure 1:  Neural network model used in this analysis 

 

Layer  Activation function 

First hidden layer Sigmoid function 

Second hidden layer Sigmoid function 

Output layer  Identity function 

Table 1: Activation functions for the neural network 
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3. Analysis 

3.1. Data description 

The traffic volume data observed by the Okinawa Prefectural Police on streets in the urban area of the 

main island of Okinawa, Japan were used in this study. The data comprise traffic volumes recorded at 

five-minute intervals on 455 street links defined by the Vehicle Information and Communication 

System (VICS) Center in Japan.  

The traffic volume data of each street were normalised with mean zero and variance one to analyse the 

scale of the weight on each street. Where data were missing for time intervals on any street, the missing 

data were linearly interpolated using the last and next observation associated with that street.  

The observation data from June 2011 to August 2011 were used to estimate the neural network model, 

and the observation data for September 2011were used to evaluate its prediction accuracy. 

3.2. Results 

We first examined the prediction accuracy of traffic volume under the different settings of number of 

neurons in each hidden layer and the different length of data for learning processes. Table 2 shows 

details of settings and their prediction accuracy in MSE.  

It is confirmed that models with smaller number of neurons and estimations by longer data period output 

better accuracy. It suggests that the prediction by neural network with large number of neurons utilizing 

small dataset might cause over-fitting problems and provide low-accuracy prediction. 

Hereafter, we utilise the prediction results obtained by model A3, which had the lowest MSE. Figure 2 

shows that the prediction correlates well with the daily variation of observed traffic volume data, 

although some noisy fluctuations in observed data are neglected. 

Table 3 shows the aggregation of 𝐖1
′ 𝐖1 by proximity of streets. It can be seen that the traffic volume 

prediction of the next intervals of each street is strongly affected by the latest traffic volume observation 

of that street and the streets with high proximity. 

 

Model 
[Number of neurons in first hidden layer, 

Number of neurons in second hidden layer] 

Data period used for 

estimation 
MSE 

A1 

[100, 100] 

1 month (Sep. 1 –Sep. 30) 0.201 

A2 2 months (Sep. 1 –Oct. 31) 0.190 

A3 3 months (Sep. 1 – Nov. 30) 0.160 

B1 

[150, 150] 

1 month (Sep. 1 –Sep. 30) 0.202 

B2 2 months (Sep. 1 –Oct. 31) 0.223 

B3 3 months (Sep. 1 – Nov. 30) 0.168 

C1 

[200, 200] 

1 month (Sep. 1 –Sep. 30) 0.321 

C2 2 months (Sep. 1 –Oct. 31) 0.249 

C3 3 months (Sep. 1 – Nov. 30) 0.177 

Table 2: Hidden layer settings, data period used for estimation and prediction errors 
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Figure 2: Traffic volume observations and predictions by Model 𝐴3 for street VICS ID #17 

 from September 1 to September 7. 

Connection of 

streets 
Average Variance Maximum Minimum 

Target street 7.35 7.91 70.9 0.40 

1st order -0.126 1.80 2.45 -7.60 

2nd order 0.135 1.16 8.87 -3.18 

Others 0.016 1.11 14.4 -15.5 

Table 3: Relation of proximity of streets to estimated weights 

Figure 3(a) shows a street in which the prediction is highly affected by the observation of itself and a 

downstream neighbour street. Because a major traffic bottleneck exists downstream of the neighbour 

street, the traffic volume of this street is influenced by the downstream.  

Conversely, Figure 3(b) and Table 4 show a street for which the traffic volume prediction has a strong 

relationship with distant streets. We assume that the similarity in daily variation of traffic volume makes 

the weight of distant streets higher. This study focused on the relationship between the similarity of 

traffic volume data and the spatial proximity in the network; however, Figure 3(b) and Table 4 indicate 

that consideration of the similarity of temporal changes in traffic volume data between streets is 

important for traffic volume prediction. 

4. Conclusion 

This study estimated the parameters of a neural network model for short-term traffic volume prediction 

in urban street networks using deep learning. Further, the relationship between the size of elements of 

the transformation weight matrix from the input layer to the first hidden layer and the proximities of 
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streets in the target street network were also analysed. The results obtained indicate that the predicted 

traffic volume of each street is strongly affected by the observed traffic volumes of that street and streets 

with lower order connections. This suggests that a neural network model that filters the traffic volume 

data of distant streets and considers that of adjacent streets may have a high prediction performance 

with only a small load in the machine learning process. 

In this study, focus was only on the spatial aspects of the traffic volume dataset. However, as shown in 

Figure 3(b), the temporal variation in the traffic volume on each street is also useful for the prediction. 

It is necessary to determine how to efficiently utilise both the spatial and temporal distribution of traffic 

volume data for traffic volume prediction. It is also necessary to design neural network models that deal 

with the spatio-temporal information hidden in traffic data, not only traffic volume data but also traffic 

density and velocity data. These tasks will be dealt with in future work.  

 

(a)       (b)  

Figure 3: Spatial distribution of estimated weight parameters. (a) Street #573 with strong relation to 

neighbours. (b) Street #592 with strong relation to distant streets. 

 

Connection of 

streets 
Average Variance Maximum Minimum 

Target street 0.118 - - - 

1st order -2.22 1.63 -0.67 -5.52 

2nd order -0.348 1.59 2.29 -2.93 

Others 0.251 2.16 10.2 -5.15 

Table 4: Relation of proximity of Street #592 to estimated weights 
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