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1. Introduction  
In recent years, increasingly popular precision agriculture technology has become one of 
primary beneficiaries of geocomputation methods. Modern farmers and their advisors have to 
deal with multiple field-scale data layers representing spatially variable growing 
environments. Varying the rate of fertilizers and other agricultural inputs according to local 
needs is a promising step toward sustainability of profitable and environmentally protective 
crop production. However, inappropriate prescribed variable rates have diminished the 
effectiveness and, therefore, the profitability of this management strategy. In part, this is 
because low-density (usually 1 ha) soil sampling and laboratory analysis has been the most 
widely used method to determine local needs throughout a field. This method is insufficient 
to accurately describe the spatial variability of yield limiting soil properties. Increasing the 
density of conventional soil sampling is expensive. However, numerous high-density data 
layers (e.g., yield maps, aerial images, sensor data, etc.) can now be obtained at relatively low 
cost (McBratney et al., 2005). Several studies have verified that proper analysis of these 
spatial data layers can improve the accuracy of prescription maps while reducing the need for 
laboratory analyses of the extracted soil samples (Thompson et al., 2004). Unfortunately, 
existing commercial software applications do not facilitate a straight-forward process of 
multi-layer data analysis and interpretation.  

Therefore, the ultimate goal of our work is to formulate a comprehensive methodology for 
delineation of field areas with the greatest potential for differentiated management using on-
the-go soil sensor technology. Using high-density georeferenced measurements obtained 
while moving across a field can reveal the spatial variability of soil characteristics in great 
detail (Adamchuk et al., 2004). However, most of the measured properties do not directly 
relate to a particular agronomic characteristic commonly used to prescribe the management of 
agricultural inputs. Thus, many service providers started using sensor-based maps to 
determine field areas significantly different from the rest of the field. They then sample these 
areas to determine whether a differentiated soil treatment could be beneficial.  

Based on common practices used today, the process of locating these guided samples is 
subjective. Service providers simply display the maps and manually identify points for future 
sampling. Obviously, inexperienced professionals frequently fail to succeed while using this 
approach. As a result, systematic grid sampling remains dominant. 
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The objective of this publication is to initiate discussion on the proper prescription of 
guided soil sampling to supplement sensor-based soil maps with a limited number of 
verifiable laboratory measurements.   

2. Materials and Methods 
While working with leading experts that practice guided soil sampling, the following three 
rules have become apparent. Guided soil samples should: 1) be collected from relatively 
homogeneous field areas (away from the field boundary and away from locations where 
sensor data changes significantly over short distance intervals), 2) uniformly cover the entire 
range of sensor-based measurements (especially the highest and the lowest spots), and 3) be 
spread across the entire field to assure representation of different soil conditions unaccounted 
for by sensor measurements (e.g., soil types, terrain, profile structure, past management, etc.). 
Mathematically, these three criteria can be represented using the following three statistics 
respectively: 1) neighbourhood variability, 2) D-optimality criteria for a potential regression 
analysis, and 3) spatial predictability criterion. 

A map of 598 soil pH measurements obtained using Mobile Sensor Platform (Veris 
Technologies, Inc., Salina, Kansas, USA) from a 23-ha field in Kansas was used to prescribe 
10 guided soil sampling locations. Each sample was assumed to be co-located with a sensor-
based measurement. A total of 63 different sets of guided soil samples were compared. The 
sets included: 1) 20 different combinations of 10 randomly selected points, 2) 19 different 
combinations of points randomly selected from 10 rectangular sections of the field (grid 
cells), 3) 20 different combination of points randomly selected from 10 equal intervals of on-
the-go soil pH measurements (Figure 1), 4) the set of points with the highest similarity to the 
nearest existing neighbours in each of four directions, 5) the set of points located in the centre 
of each grid cell (20th combination of points evenly spread across the field), and 6) two 
subjective sets of guided soil samples selected using the general rules outlined above. 
Examples of guided sample combinations obtained according to these strategies are shown in 
Figure 2.  
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Figure 1. Distribution of on-the-go soil pH measurements separated in 10 intervals. 

 
The quantitative evaluation criteria were: 1) mean squared difference (MSD) between pH 

measurement at a given point and the nearest existing neighbour in each of four directions 
(homogeneity criterion), 2) D-optimality of pH distribution corresponding to each subset of 
10 points (D-optimality criterion), and 3) maximum standard error of a kriged map produced 
using each subset of 10 points (field spread criterion). To compare the overall performance of 
each set of 10 guided sampling locations, every criterion was standardized and the 
corresponding z-scores were added. The lower the score, the higher was the degree of a given 
criterion satisfaction. 
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Figure 2. Example distributions of 10 guided samples identified according to six different 

specified rules. 
  

3. Results and Discussion 
Different guided sampling definition strategies were superior when satisfying the 
corresponding criteria. Thus, guided samples with the lowest neighbour MSD (Figure 2d) 
produced the lowest z-score for the homogeneity criterion. D-optimality criterion was best 
satisfied when guided points were evenly spread across the entire range of soil pH 
measurements (example in Figure 2c). The even field spread through rectangular grid cells 
yielded the lowest z-scores for the field spread criterion (example in Figure 2b). However, 
this came at the expense of other criteria that were not purposely addressed, which affected 
the total z-score and caused it to be similar or higher than the total z-score for the random 
selection of guided soil samples (example in Figure 2a). 

On the other hand, the comprehensive subjective strategy (example in Figure 2f) was 
aimed at reducing the total z-score, which appeared to be lower than the means corresponding 
to other strategies. However, in every case where randomization was involved, there was at 
least one combination resulting in yet a lower total z-score. Furthermore, placing sampling 
points in the centre of each grid (Figure 2e) also revealed a rather satisfactory performance, 
which is obviously misleading. It looks as if equal weighting of all three criteria may not be 
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the most suitable. From a practical viewpoint, the D-optimality and homogeneity criteria tend 
to be more critical than the field spread criterion when it comes to the analysis of sensor data. 
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Figure 3. Comparing z-scores for six different guided sampling prescription strategies (error 

bars indicate extreme values observed through the randomization process). 
 

In our continued work, we intend to consider a more involved analysis of the three criteria 
as they affect the ability of the guided samples to address the need for sensor calibration 
sustainable across the entire field. Also, it is necessary to question the number of guided 
sampling points desirable for a specific site. Industry’s tendency to use multilayer sensor 
inputs brings an additional quest to engage two or more dense data layers when identifying 
the field locations most favourable for in-depth analysis. 

4. Conclusions 
With this work, we initiated the development of a comprehensive methodology for the 
analysis of georeferenced sensor-based soil measurements. As the first step, we quantified 
three different criteria commonly considered by practitioners when selecting points for 
additional investigations to supplement sensor-based measurements. These points should be 
spread across the entire field area, represent the entire range of sensor measurements, and be 
placed in the most homogeneous areas of the field. The fact that certain randomly selected 
sets of 10 guided samples produced lower z-scores than the subjective strategy indicates the 
possibility of using one of the optimization methods to identify guided sampling locations 
that would minimize an overall objective function. 
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