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Abstract.  Computer technologies have been rapidly improving throughout the last couple of decades, and they are
now at the stage of allowing scientists  to carry out data analyses that deal with very complex and multivariate datasets.
Moreover, there are growing numbers of researchers who wish to carry out such tasks in real-time.  Traditional data
analyses and visualization techniques are useful but not sufficient to achieve those tasks.  The Self-Organizing Map
(or Kohonen’s Feature Map) is one of the many modern data analysis tools that researchers have found useful in
analyzing high-dimensional (multivariate) datasets such as atmospherical and demographical data.  It is often used for
such data analyses because of is multidimensional scaling and topological mapping capabilities.  However, information
loss caused by multidimensional scaling sometimes results in difficulty in interpreting an SOM when it is visualized in
2-D space. This study presents  the use of the SOM for geospatial data analysis with the help of Java-based advanced
3-D visualization tools and a visual programming environment (GeoVISTA Studio) in order to gain deeper
understanding of those complex datasets.

1. INTRODUCTION

Most of us have witnessed the advances in modern
computing over the last three decades (Ceruzzi, 1998),
and it seems that it keeps improving its capabilities and
performance with the help of semiconductor technology
(Geppert, 1999).  This dramatic improvement in
computing has changed how geographic and other
types of massive data are collected and/or processed.

Decennial census data collected by the U.S. Census
Bureau contain a colossal amount of demographic
information.  There are hundreds of census variables
available to analyze various demographic phenomena.
Those who study a particular phenomenon normally
select appropriate census variables according to a
theory or hypothesis of the model.  Even though an
analyst may successfully choose variables suited to
analyze the phenomenon, the number of parameters,
which might be contributing to the phenomenon, is
often still enormous.  Hence data analyses using the
power of modern computing technology would help to
uncover various insights into the phenomenon.

Back in 1997, it was predicted that there would be at
least 31 satellites in orbit (landsat-like, high resolution,
hyperspectral and radar) capable of producing massive
data of 30 meters or better resolution (Stoney, 1997).
The amount and quality of the remote sensing
information provided by these satellites will have
significant impact on our knowledge and understanding
of the Earth, providing better data analysis techniques
which are capable of handling these massively complex
datasets.

In order to handle such complex and high dimensional
data, the demand for more sophisticated data analysis
techniques, including information visualization, has
been increased.  The modern advances of computing

and visualization technologies  (Brown et al., 1995) also
allow us to implement and to utilize such computing-
intensive, sophisticated data analysis techniques
(Schwan, K. et al., 1995; Hecht-Nielsen, 1990).
Moreover, there are now great demands for carrying out
such tasks in real time in order to test many hypotheses
with different parameters allowing analysts to quickly
gain insights into complex models (Schwan, K. et al.,
1995).

The Self-Organizing Map is one emerging Artificial
Neural Network technology that has been found useful
to analyze massively complex datasets.  The applications
of the SOM can be found not only in the fields of
engineering but also in other areas such as the medical,
agricultural and social science fields (Kohonen, 1995;
Tokutaka et al., 1999).  This paper discusses an
application of the SOM to geographic (demographic)
datasets with the help of interactive 3-D visualization.

2. DATA ANALYSIS USING NEURAL NETWORKS

Neural networks are one of many emerging computing
technologies that have been actively studied over the
last three decades (Hecht-Nielsen, 1990).  They are
inspired by ideas from neuroscience that a sophisticated
computing system can be constructed from a network of
simple processing units (e.g., neurons).  How neural
networks work depends on the interconnectivity
between neurons.  In some neural networks, the
connections can be pre-computed from equations of
models.  However, most neural networks exploit their
learning capabilities to obtain appropriate connections
from sample data.

An artificial neuron itself carries out very simple signal
processing using its internal function, which is usually a
non-linear function such as a sigmoid function.  Due to
this non-linear nature of neurons, a massively connected



network of neurons can capture very complex and highly
non-linear characteristics of data (Bigus, 1996; Fayyad,
1996).

When neural networks are used to capture complex
structural information of the feature space, it is often
necessary to analyze what the networks have learned or
discovered in addition to just using them to obtain
answers for unknown input data.  However, this is one
of the most challenging tasks of the neural networks
(Bigus, 1996).

There are different ways to carry out this task.  One
approach is to use the neural network as a “black box”
and to make educated guesses by monitoring its’ output
responses against the controlled input data.  This type
of analysis is called sensitivity analysis (Bigus, 1996).
Assume that a neural network is trained with a
multivariate dataset of census data, which represent the
cultural and economic variables, in order to analyze the
phenomenon of gentrification.  One can investigate what
the neural network has learned by examining the impact
that a particular input variable has on the gentrification.
This is normally done by monitoring the changes in
outputs while varying only the particular input variable
and fixing the other input variables.  The difficulty of
this type of analysis is that one has to exhaustively
repeat this process for each variable until relationships
between the input variable and the gentrification are
obtained.

Another approach is to transform the state of the neural
network (what the neural network has learned) into more
human readable forms.  For example, if-then rules, which
are typical knowledge representations in many standard
artificial intelligence techniques, are very intuitive and
easy to analyze by humans in order to find the
importance of some particular input variables on the
output.  This rule generation has been studied during
the last couple of decades (Gallant, 1988; Kane and
Milgram, 1994).   However, most of the rule-based
knowledge representations rely on a binary conditioning
(Russell and Norvig, 1995).   Hence it is sometimes very
difficult to map a neuron’s nonlinear state onto the
binary state.

A third approach, which this study has taken, is to
graphically illustrate the internal state of the neural
network allowing the human to visually inspect what the
network has learned.  There are many ways to visualize
the neural networks.  The simplest method is to use
standard 2-D or 3-D numerical visualization techniques
such as histograms, scatter plots and surface plots.
However, they often only describe the overall behavior
of the network or overall qualitative characteristics of
the feature space.  It is very difficult to analyze locally
how each neuron describes a part of a feature space.
Another method is to directly illustrate the state of
neurons in the form of a network.  A network graphic
and the Hinton diagram belong to this category.
Although this type of method allows you to see the
state of an individual neuron or a connection weight, it

is still not straightforward enough to clearly associate
them with the original high dimensional feature space.

In this study, a Self-Organizing Map (SOM) is used to
analyze a demographic dataset.  As will be shown, the
SOM captures the structural information of the feature
space using the multidimensional scaling principal while
preserving topological information as well.  This is a
great advantage in visualizing the state of neurons and
connection weights over other types of neural networks.

3. BASICS OF A SELF-ORGANIZING MAP

The SOM is a set of artificial neurons, which are ordered
in Nn space.  A two dimensional array (n=2) is the most
common map and is  used to map an input signal in Rm

(m>n) space onto the two-dimensional space (see Figure
1:).   

An SOM typically consists of two layers.  One is an
input layer into which input feature vectors will be fed
and the other layer is a two-dimensional competitive
layer, which orders the neurons' responses spatially.
Neurons can be arranged on a rectangular map so that
they can be implemented using a simple 2-D data array.
A hexagonally arranged neuron map is, however, often
used because it has the advantage that Euclidean
distances between adjacent neurons are equal for all six
nearest neighbor neurons (Kohonen, 1995).

Figure 1: A hexagonal array of neurons in the SOM.

3.1 Learning Algorithm (Kohonen, 1990)

The SOM is trained without teacher signals
(unsupervised), unlike some other ANNs in which
supervised training is used, such as in backpropagation
networks.  The learning algorithm used in this study is
the same as Kohonen's algorithm (Kohonen, 1989) and
described as follows:

Let xi = {x1, x2, …, xn}
T  Rn be the i-th input feature

vector, which will be fed into the neurons in the input
layer.  Because the task of the input neurons is just to
pass the input feature vector onto the competitive layer,
the input vector xi will be used as an output vector of



the input layer.  The neurons in the input layer and the
neurons in the competitive layer are fully connected and
the connection weights of the competitive neuron j shall
be denoted by wj={wj1, wj2, …, wjn}

T  Rn.  The j-th
competitive neuron computes the similarity of xi and wj

as the output yj:

( )∑
=

−=−=
n

k
jkijii wxwxy

1

2 .

There are several ways to measure the similarity
(Kohonen, 1989); the Euclidean distance is used in this
study.  By training the connection weights according to
the following algorithm, the competitive neurons will
have the appropriate weights so that the competitive
neurons adjacent to each other will respond to input
vectors that are close in the input feature vector space.

First, all competitive neurons compute the match of the
input xi with their connection weights wj.  Then, the
best-matching neuron and its adjacent neurons now
update their connection weights with the following
Hebbian learning rule:

wj(t+1) = wj(t) + (t) (t)[xi(t) - wj(t)],

where t is a variable in the discrete time index, (t) is a
learning rate and (t) is a neighborhood kernel.  The
learning rate is a monotonically decreasing function of
time (0 < (t) < 1) and defined as:

(t+1) = (t)(1 – t/T),

where T is a training period.  The neighborhood kernel
defines the adjacent region of the best match neuron c.
All neurons within this  region will update their
connection weights.  The neighborhood kernel is also a
monotonically decreasing function of time:
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Nc(t+1) = Nc(t) (1 – t/T),

where rj and rc are the position vectors of the j - th and
the c - th neuron, respectively, in the two-dimension
array so that rj - rc represents the Euclidean distance
between those neurons in the array.  Nc(t) is the radius
of the kernel which actually defines the kernel region.
After this learning process, the neurons that are ordered
in the two-dimension array preserve the topological
information of the original feature space.  Neurons
geometrically close to each other in the map will
represent the input features, which are close to each
other in the input feature space.

In practice, the training data xi(i = 1 , …, n) are iteratively
used during the learning period T.  After the training,
input feature vectors, which have continuous values as
elements are topologically mapped onto the two-
dimensional map.  This SOM is used in order to analyze
segmented surface parts of objects.  In addition, it

transforms the feature vectors of surface parts into two-
dimensional vectors that represent the positions of
neurons.

4. VISUALIZING AN SOM

The SOM is typically trained to map a high dimensional
real space to a 2-D integer space.  Once the SOM is
trained, all samples used in training will be represented
by a neuron with equal probability.  This is one of the
SOM’s mathematical goals and one can use the trained
SOM to model the probability density function of the
given sample.  Other uses of the SOM are
multidimensional scaling (data encoding), cluster
discovery, and visualizing high dimensional data space.

4.1 2-D Visualization

When the SOM is to discover some structure of the
given samples in the feature space, it often is useful to
visualize the finding in the form of cluster formation.

The typical 2-D SOM is used to achieve
multidimensional scaling and to map the higher
dimensional space onto a 2-D space.  Once the high
dimensional data is mapped onto the 2-D space, it is
very intuitive and easy to analyze the data structure of
the samples.  Moreover, the SOM offers the topological
information of the samples in the feature space in the
form of adjacency network of neurons in the 2-D space.

By exploiting these features of the 2-D SOM,
visualization techniques to depict the data structure of
the feature space in the form of clustering of neurons in
the SOM have been developed (see Ultsch, 1993;
Kraaijveld et al., 1992).  This  visualization typically uses
a gray scale to illustrate the distance between
connection weights.  The light shading typically
represents a small distance and the dark shading
represents a large distance (see Figure 2: for an example).

Figure 2: An example of a gray scale distance map
representing a 12x10 SOM.  A cluster can be identified

as a region surrounded by dark regions.

This type of visualization is useful as long as relatively
clear cluster boundaries exist or the granularity of the
distance differences is large.  When the cluster
boundaries get fuzzy or the granularity of the distances
becomes too small to represent with a gray scale, it
starts getting difficult to see fuzzy cluster landscapes in
the gray scale.  Moreover, since all distance values are



normalized, only relative (qualitative) analysis is allowed.
Subsequently, this “gray scale distance map” cannot be
used to compare different SOMs’ mapping results.

4.2 3-D Visualization

 In this study, the state of the SOM is visualized in a 3-D
space.  The distances between connection weights are
used to compute height values (along the z axis) and
color values.  The color serves the same visualization
effect as that of the gray scale distance map.  However,
by using the height, the distances no longer need to be
normalized.  Hence they represent the real Euclidean
distances in the original feature space, and can be used
to compare different cluster formation among different
SOMs.  Moreover, it is much easier to see clusters in the
3-D surface form and is more intuitive to interpret the
distances between clusters.  One can easily perceive the
distances in the original feature space as geodesic
distances on this synthetic 3-D surface.

Figure 3: An example of a 3-D distance map
representing the same SOM as Figure 2:

Figure 3: is an example of a 3-D version of the distance
map.  It represents the same 12x10 SOM as Figure 2:.
Neurons are indicated by the orange dots.  In this figure,
the color is used to represent normalized
distances. Java3D™ linearly interpolates colors
between vertices along surfaces.  Since colors were
assigned to the contiguous 3-D surfaces unlike the gray
scale distance map, the color gradation reveals
underlying 3-D surface structures.  Consequently, one
can observe cluster formation more clearly.  For
instance, two clusters can easily be identified at the
bottom-left corner in Figure 3:, whereas it is very difficult
to distinguish these two regions in Figure 2:, even
though there is a slight difference in gray scale colors.
Furthermore, one can identify two clusters in the top-
middle region in the 3-D distance map but it is difficult to
see them in the gray scale distance map.  These
observations can be confirmed by looking at the 3-D
surface from a different viewing angle.  The clusters are
clearly indicated by the ridges in Figure 4:.

Figure 4: The 3-D distance map from a different viewing
angle. Notice the clusters surrounded by ridges.

4.3 Dynamic visualization

Here, the word dynamic does not mean a simple
animation.  It means that the contents of the
visualization can be manipulated and modified in real
time (for instance, in the form of steering).  The
integration of steering and visualization has been
recognized as a very important aspect of studying
complex models and datasets (Schwan, K. et al., 1995).

Figure 5: A screenshot of GeoVISTA Studio

In this study, the visualization/data analysis program is
designed and constructed using GeoVISTA Studio
(Takatsuka and Gahegan).  Studio is a coding-less visual
programming environment based on Java™ and
JavaBeans™ architecture.  A user builds a program by
connecting various computing modules (see Figure 5:).
In Studio the design phase and the execution phase are
merged and the program being designed is always alive.
Hence a user can dynamically configure interconnection
between modules.  Consequently, the user can explore
numerous visualization possibilities by assigning
different data values to different visual variables.
Moreover, the 3-D visualization modules in Studio are
based on Java3D™ technology, which allows a user to
update the 3-D scene in real time by supplying numerical



values, which are computed by the model steering
modules.

In the late 80’s and the early 90’s many scientific
visualization tools exemplified there were two types of
scientific visualization tools.  One was to provide simple
but fast tools that enable a user to quickly display
different views of the data.  The other was to provide
tools that are more computationally intensive but
capable of generating much richer scenes (Saltzman, J.,
1990).   In either case, a user has to combine various
different software and/or hardware tools in order to
manipulate data and to obtain visualization results.
Tools like GeoVISTA Studio allow a user to combine
various computing modules easily and effectively in
order to accomplish sophisticated scientific visualization
(Takatsuka and Gahegan).

In this environment, the training process of the SOM
can be visualized in real-time.  One can observe how
neurons are trained and spread across the feature space
by monitoring the 3-D visualization of the current status
of the SOM.  It might require some training to make
sense of this dynamic visualization, but it is useful for
analyzing how particular ordering of the training samples
have influence on the training process.

5. EXAMPLE

In this section, an example of demographic profile
analysis is described.  It demonstrates the use of the
SOM and the interactive 3-D visualization to gain an
understanding of the gentrification phenomenon at
Harrisburg, PA.

5.1 Datasets

The various census data were collected for the twenty-
three tracts of the City of Harrisburg (See Figure 6:) as
listed in Table 1 (Mostert, 2001).  These data were
chosen to reflect the city attributes (such as class shift,
housing stock, suburban expansion, economic
conditions, lending institutions, government
involvement, etc) in the development of gentrification
(Lakshman, 1996).  The raw census values were
converted into percentage of population variables, and
monetary values (Income, Rent and Value) were adjusted
for inflation to 1999 dollars based on the consumer price
index (CPI) (U.S. Department of Labor Bureau of Labor
Statistics 2000).  Even though these census data
describe microscopic changes, they are sufficient for an
indication of neighborhood level temporal shifts in class
and value.

Table 1: Census Variables (Mostert, 2001).

Census Variables
Total Population
Young (20-34)
Middle Aged (35-54)
Married Couples with Children under 18 years
Single

Married
White Race
Black Race

All Housing Units
Owner-Occupied Housing Units
Renter-Occupied Housing Units
Vacant Housing Units

Persons 25 years and over
Completed High School
College 1-3 Years
College Graduates

Worker’s 16 years and over
Worked in SMSA of residence
Harrisburg City
Remainder of Dauphin County
Worked outside SMSA of residence

Employed persons 16 years and over
Civilian Labor Force Unemployed
Executive, administrative, and managerial

occupations
Administrative support occupations, including

clerical
Operatives (including machine operators,

assemblers, and inspectors)

Females 16 years and over
Females in the Civilian Labor Force Employed

Raw Monetary Values

Median Family Income (dollars)
Median Gross Rent (dollars) or Median

(dollars) Rent Renter-Occupied Housing Units
Median (dollars) Value Owner-Occupied

Housing Units



Figure 6: Harrisburg, Wormleysburg, and selected
Dauphin County, Pennsylvania Census Tract

Boundaries.

5.2 Program Design

The program for analyzing these gentrification data was
developed using GeoVISTA Studio.  Figure 7: shows the
design of the analysis program.  It contains three major
parts.  There is an SOM section at the top-left region.
There are three main components in this section.  One is
the SOM component that trains the SOM.  The SOM
calibration component labels each neuron according to
the calibration data that contain labels for known
samples.  The last component finds a corresponding
neuron for a given sample data and computes the
classification errors.

The second section (in the top-right region) contains
components for 3-D visualization.  In this section, the
information of the trained SOM is transformed into a
synthetic 3-D surface using x and y coordinates of
neurons and distance values of neurons’ connection
weights.  The distance values were used for height
values of the synthetic surface.  Hence the high
elevation surface indicates the great separation between
neurons in the feature space.

The last section contains modules to create Sammon
mapping (Sammon, JR., 1969) from the trained SOM.
This Sammon mapping module computes the location of
neurons in the 3-D space from their connection weights.
Sammon mapping has been used to visualize N-
dimensional data in two or three-dimensional space in
order to discover some structural information of
multidimensional data.  This mapping illustrates a more
realistic view of data structure in the original feature
space.  Although it was not included in the experimental
results, it is useful to use this mapping for assisting the
interpretation of the 3-D distance map.

Figure 7: A Studio design for 3-D Visualization of the
SOM.

5.3 The SOM training parameters

The size of the SOM used in the experiment was 30x30.
An SOM of size 20x20 would normally produce the
similar cluster formation, but the size of 30x30 produces
more detailed 3-D surfaces.  The training of the SOM
was carried out in two phases.  The training parameters
are listed in Table 2.  During the first stage of training,
the SOM is trained with the large initial learning rate, the
neighborhood size and the short learning step.  The
purpose of this stage is to roughly place neurons in the
feature space.  During the second stage, the locations of
neurons are fine tuned by using the much smaller initial
learning rate and neighborhood size.

Table 2: Training parameters for the SOM.

Initial
Learning

Rate a

Neighborhood
size Nc

Learning
Steps

1st Stage 0.5 0.8 * map size 1000

2nd Stage 0.2 0.2 * map size 10000

5.4 Chronological cluster analysis

In order to find the movement of gentrification in each
decade, three SOMs were trained with 1970, 1980 and
1990 data.  Figure 8: shows the 3-D distance map for
1970.  It is clear that the capitol (202) and the center
business district (CBD) (201) are located at the top-left
corner with a relatively large distance from other inner
city tracts (203 and 208) and tracts at the edge of
suburban (215 and 217).  By judging the height of cluster
boundaries, the clusters are organized on the map from



the inner city tracts to the suburban tracts in a counter
clockwise direction.

Figure 8: The 3-D distance map for 1970

There were several significant events, which took place
between 1970 and 1980.  There was the Hurricane Agnes
flood, the urban renewal projects, and the establishment
of the Harrisburg Historical Association and the Shipoke
Historic District (U.S.G.S, 1996; Redevelopment
Authority, 1967, 1971, 1973a, 1973b; City of Harrisburg,
1998).  The tracts (204, 205, 208 and 210), which are
known to be affected by these events , showed
significant movement in the SOM.  In the 1980’s 3-D
distance map (Figure 9:), the majority of tracts seem to
be organized in a clockwise direction from top-left (inner
city) to bottom-left (suburban).  However those four
tracts were placed in the middle of the map away from
their neighboring tracts.

Figure 9: The 3-D distance map for 1980

In the 1990’s map (Figure 10:), tracts for the suburban
area are located at the top-left area, inner city tracts are
at the top-right corner (except capitol 201), middle class
tracts (209 and 215) are at the top-middle and blue collar
are at the bottom half of the SOM.  Since those inner city
tracts and middle class tracts are situated close together

near the suburban tracts, this could be an indication of
the gentrification.

Figure 10: The 3-D distance map for 1990

5.5 Temporal cluster analysis

In this section, the movement of each tract over three
decades is analyzed in a single SOM.  For this
experiment, all data from 1970, 1980 and 1990 were used
to train the SOM to find data structure (clusters) of
census data.  Once the SOM was trained, it was labeled
using separate datasets from the ‘70’s, ‘80’s and ‘90’s as
shown in. Figure 11: ~ Figure 13:.

All the tracts were located in order from bottom-left
(inner city tracts) to top-left (suburban tracts) for the
‘70’s data (Figure 11:).  This is consistent with the result
shown in Figure 8:, indicating the status of the inner city
is very different from those of suburban and middle
class tracts.

Figure 11: The 3-D distance map for three decades with
1970 tact labels.

In 1980, those suburban tracts moved towards the
middle of the map and those supposed to be affected by
various events in the 1970’s are located at the middle-



bottom of the map. Those belonging to middle class and
blue collar moved to the right-middle region except tract
206, which did not show significant change.  However,
as is shown in Figure 13:, tract 206 seems to follow the
movement of tract 207.  Some inner city tracts, such as
202, 204, 205 and 208 are now closer to suburban and
middle class tracts.

Figure 12: The 3-D distance map for three decades with
1980 tact labels.

In the figure for 1990, the inner city tracts were located at
the top-right corner with the middle class and suburban
tracts in their vicinity.  They are now much closer to
middle class and suburban tracts than blue-collar tracts.
However, there are still differences between them as
high ridges between them indicate.  Since it is known
that the tracts 203, 204 and 210 have been gentrified, it is
possible to assume that nearby tracts (202, 205 and 208)
are currently experiencing the gentrification.  It is also
interesting to see how the tract 206 will develop (either
move towards the blue collar tracts or become
gentrified).

Figure 13: The 3-D distance map for three decades with
1990 tact labels.

It should be noted that all visual aspects of the 3-D
distance map could be customized in real time.  For
instance, one might want to increase the height
resolution of the map in order to emphasize the
structural details of the 3-D surfaces.  Another example
of interactivity would be to assign different numerical
values to visual variables.  For example, it is possible to
create a 3-D surface using quantization errors of neurons
instead of distance between them.  Moreover, the SOM
and 3-D visualization components can be connected to
other computational (e.g. statistical) or visualization
(traditional map and PCP) components in order to
provide a more different view of the data.

6. CONCLUSION

This paper showed how the SOM could be applied to
analyze a complex geographic (demographic) dataset.  In
addition, it demonstrated the use of 3-D visualization to
depict the state of the SOM more clearly than the
conventional gray scale distance map.

Recent geographic data have become more complex and
too large to be handled by the traditional statistical
tools.  This study utilized the multidimensional scaling
and topological mapping capability of the SOM to
analyze high dimensional (26 dimension) demographic
data.  In order to learn what the SOM have extracted
from this high dimensional data space, the 3-D version
of the distance map was used.  The use of 3-D
visualization allowed a clear illustration of the
underlying data structures, which were more difficult to
see in the conventional gray scale distance map.

This study demonstrated the use of these tools to
analyze the gentrification in Harrisburg, Pennsylvania.
By analyzing the clusters found by the SOM or by
labeling neurons to track the movements of census
tracts over a period of time, the gentrification
phenomenon has been observed.

In further research, these tools must be linked to
different types of data analysis tools in order to assist
the extraction of more information from the data.
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