Built Environment and Health in the Age of Big Data

Anne Vernez Moudon, Dr es Sc Urban Form Lab University of Washington, Seattle, WA, USA http://depts.washington.edu/ufl/

This material is extracted from a keynote made at the European Colloquium on Theoretical and Quantitative Geography on 10 September 2017, in York, UK; and a presentation made at the Leeds institute of Data Analytics, 21 September 2017, University of Leeds, UK

Presentation

- 1. City and transport planning can/should support better health, reduce the incidence of non-communicable diseases, specifically obesity, and help achieve energy balance
- 2. Research on behavior and built environment (BE)
- 3. Causal path to obesity: BE influences through walkability and walking
- 4. Exposure to BE: Theory and measures
- Spatial modeling of BE and walking/transit use behavior: An example

The Lancet Series September 2016 **1. HOW CITY DESIGN AND TRANSPORT PLANNING CAN IMPROVE HEALTH**

City planning can help reduce air pollution, road trauma, non-communicable diseases (cardiovascular disease and diabetes), and physical inactivity.

For better health, cities need to

- incentivize a shift from private car use to cycling and walking
- adopt a compact city model where distances to shops and facilities, including public transport, are shorter and within walking distance.

http://www.thelancet.com/series/urban-design

THE LANCET

www.thelancet.co

Urban design, transport, and health

"Systematic designing of cities to enhance health through active transport promises to be a powerful strategy for improvements in population health on a permanent basis."

September, 2016

Socioeconomic position and area level disadvantage

2. Behavior – built environment

Data and research

Behavior: Primary data on mobility and activity patterns

Four instruments for 7-day assessment; administered 3 times in 5 years

TRAC and Action projects, PI BE Saelens

							· Luth
		1	f I were to m	ove, I'd like	to find a neighb	orhood	
	A. that if this family apartn togeth	: is a lively an means it has houses, town rent buildings er on various	a active place, a mixture of si houses, and si that are close sized lots.	, even <i>Or</i> ngle mall	B. with single fa apart on lots 1/ this means that lively or active	amily houses fa 2 acre or more : it is not an es place.	arther e, even if pecially
		and the second	Your	neighborho	od preference is:		Value
	1.	0 1 strongly prefer A	2 3 somewhat prefer A	4 5 neutral	6 7 8 somewhat prefer B	9 10 strongly prefer B	(1-11)
2		If	I were to mo	ove, I'd like i	to find a neighbo	rhood	ų.
	A. wh	nere I can wa	lk to stores, ants, even if th	Or	B. where the con	mercial areas	are
	librar mear comn block	nes of restaurns that the ho nercial areas s (1/3 mile) o	uses and are within a few of each other.	W	or more) from the this means that I stores, libraries o	ver a mile; 10 l e houses, even can't walk to r restaurants.	locks if
	librar mear comn block	nes of restaur nercial areas s (1/3 mile) o Yo	uses and are within a few of each other.	w ood preferei	or more) from the this means that I stores, libraries o nce is (circle one	ver a mile; 10 t e houses, even can't walk to r restaurants. number):	olocks if

2 J. Neighborhood Preference

We'd like you to imagine moving to a different neighborhood. We'd like you to think about

the kind of neighborhood you'd hope to find. Please read the following neighborhood descriptions, then circle the appropriate number to indicate your preference. Keep in mind that anything that we do not refer to in a question - such as school quality, public safety.

or house cost - is exactly the same between the two choices presented.

GPS

TRAC Survey

Accelerometer

Example: Mon Tues Wed Thurs Fri Sat Sun Date_6/5/08

Time you put the meter	er & GPS on: 7:34 (an	ה∕ pm					
Start of Day ⊠ Home □ Other: □ Work □ School	Place Name HOMe				Activity Code: 1		
	Number or Nearest Intersection	Street	City	Zip	Time Le	ft: 8:1	.5 @m/pm
Place #1 □ Other: □ Home □ Work ⊠ School	Place Name SChOOI	Street	City	Zin	Activity T Code: M 3	iravel lode: 8 ►	If '1' or '2', # of people in vehicle
Time Arrived: 9:06	(am/pm Number of Nearest Intersection	Sileet	City	Ziþ	Time Le	ft: 3	05 am/pm)
Place #2 Other: Home Work School	Place Name Trader Joes 4555 Roos	sevelt Way NE S	eattle, 98	105	Activity I Code: M 3	ravel lode: 12 ►	If '1' or '2', # of people in vehicle:
Time Arrived: 3:23 ar	Number or Nearest Intersection	Street	City	Zip	Time Le	eft: 3:4	48 am/pm)
Place #3 ☐ Other: ⊠ Home ☐ Work ☐ School	Place Name HOme				Activity T Code: M 3	iravel lode: 4 ►	If '1' or '2', # of people in vehicle
Time Arrived: 4:15 a	am(pm) Number or Nearest Intersection	Street	City	Zip	Time Le	ft: 7::	15 am/pm)
Place #4 Other: Home Work School	Place Name TOUr				Activity T Code M 13: 1	ravel lode: .00►	If '1' or '2', # of people in vehicle
Time Arrived: 7:15	Ampro Number or Nearest Intersection	Street	City	Zip	Time Le	ft: 8:	00 am/@m

 Time you took the meter & GPS off:
 11:00
 am(pm)
 BE SURE TO PLUG IN YOUR GPS TO CHARGE!!!

 Time removed meter or GPS and reason:
 8:25-8:30 pm \$hower
 11:00
 11:00

Behavior data integration

- Collation of multiple data streams into a single "LifeLog" table containing all source data
- Data joined by common time stamps across tables

Hurvitz PM, Moudon AV, Kang B, Saelens BE, Duncan GE. Emerging technologies for assessing physical activity behaviors in space and time. Front Public Health. 2014 2, 2. PMID: 24479113

LIFELOG contains "Big Data" on activity and mobility patterns

- Number of records per subject per week
 GPS: ~33,000 x, y points
 - Accelerometry: ~51,000 counts
 - Travel diary: ~43 places and trips

Built environment data: Spatial Extent and data unit

Puget Sound Seattle Region: 1,000 mi² (2500 km²⁾ 1,200,000 tax parcels

	Domains	Variables*	Number of discrete observations in King
			Co
Built environment	Neighborhood environment	residential units (houses, apartments, condos, mobile	489k parcels
data		employment/iobs	21k parcels
		residential wealth (property values)	489k parcels
hy dense in and you ble		vacant lands	51k parcels
by domain and variable	Routine	food facilities	1,500 food stores
of interest	destinations		6,500 restaurants
		physical activity and fitness facilities	880 parcels
		retail services	5652 parcels
		schools and educational facilities	737 parcels
		offices	4393 parcels
		medical offices	769 parcels
		public services (libraries, etc)	
V.OF.WAY		open space and parks	1541 parks
		facilities in parks	103 types of facilities per park

UFL

ected by the LIW Urban Form

Built environment data

by domain and variable of interest

Domains	Variables*	Number of discrete observations in King Co
Transportation infrastructure	street (freeways and expressways, arterials, collector and local streets)	14k linear miles
	intersection density	64k intersections
	trails	829 linear miles
	sidewalks	1708 linear miles
	traffic signals	2000 signals
	parking	2.3 million stalls
	passenger rail stations	17 stations
	bus stops	8635 stops
Traffic conditions	vehicular volumes	86 million daily vehicle- miles
conultions	bus ridership	364k daily trips
	pedestrian/bike collisions	1150 annual collisions
* measures typically include counts, dens data already has been collected by the UV	ities, and distances between features of interest. Both airline V Urban Form Lab	and network measures are calculated; UFL =

Behavior – built environment data

THE TRACE

From Troiano et al. (2008). Physical activity in the United States measured by accelerometer. Med & Sci in Sports & Exercise. MPA : accelerometer count >= 1010 per 30-sec epoch; VPA: accelerometer count >= 2999 per 30-sec epoch

Energy intake

Energy expenditure

3. Built environment influence on behavior Causal paths to energy balance

BE and causal paths to energy balance

Horn EE, Turkheimer E, Strachan E, Duncan GE. Behavioral and Environmental Modification of the Genetic Influence on Body Mass Index: A Twin Study. Behav Genet. 2015. doi: 10.1007/s10519-015-9718-6. PubMed PMID: 25894925. Duncan GE, Cash SW, Horn EE, Turkheimer E. Quasi-causal associations of physical activity and neighborhood walkability with body mass index: A twin study. Prev Med. 2015;70C:90-5. doi: 10.1016/j.ypmed.2014.11.024. PubMed PMID: 25482422.

MVPA, walking, walkability, and BMI Results from twin studies

6376 same-sex adult twin pairs within pair analyses

- Walking and MVPA associated with BMI in phenotypic analyses; associations attenuated but significant in biometric analyses (*Ps* < 0.05).
- Walkability associated with walking (but not with MVPA or with BMI) in both phenotypic and biometric analyses (*Ps* < 0.05), with no attenuation accounting for shared genetic and environmental background.
- Higher neighborhood walkability is (quasi) causally associated with increased neighborhood walking levels, and, in turn, higher neighborhood walking levels are (quasi) causally associated with reduced BMI.

Duncan GE, Cash SW, Horn EE, Turkheimer E. Quasi-causal associations of physical activity and neighborhood walkability with body mass index: A twin study. Prev Med. 2015;70C:90-5. doi: 10.1016/j.ypmed.2014.11.024. PubMed PMID: 25482422.

MVPA, walkability and BMI Results from twin studies

5079 same-sex adult twin pairs

- High levels of MVPA suppressed genetic risk for high BMI, controlling for underlying genetic etiology shared between PA and BMI.
- Neighborhood walkability also had moderating effects on genetic variance in BMI; however, these effects were mediated by MVPA.
- Interventions focusing on PA, including those that improve aspects of the BE that in turn promote more PA, could help reduce obesity.

- Walking = population-wide preferred mode of physical activity or exercise
- Transit use leads to more walking
- Transit infrastructure systems coexist with higher development densities, higher mix of uses (allowing routine active trips between origins and destinations)

Effect of transit use on walking share of physical activity 71%

Untangling the effects of BE on health Methodological challenges

- Participants cannot be randomly assigned to built environments. Causality can be tested through:
 - Longitudinal studies
 - Natural experiments
 - Twin studies
- Unknown direction of causality in cross-sectional studies of behavior -BE
- Self-selection of place of residence and places visited
 - spatial segregation by socioeconomic status
 - selective daily mobility bias
- Poor measures of health behaviors (esp. food intake) and BE
- Poor theory of exposure to BE

4. Theory from exposure science

Lioy and Smith, 2013 + Chaix et al. 2012

UFL

Environment affecting energy expenditure Environment affecting AXXA COUNTRAN energy intake

BE stressors/enablers

Attributes of BE stressors/enablers

• ENERGY EXPENDITURE

- Walking (utilitarian and recreation) environment
 - Development density
 - Nearby destinations for daily living
 - Short street-blocks
 - Sidewalks/ crosswalks
 - Public transport
 - Parks and recreation areas (waterways)
 - Trails

• ENERGY INTAKE

Food environment

- Healthy and unhealthy food venues
 - Calories versus nutrients
 - Affordability

Geographic context of BE stressors/ enablers

- The spatial distribution/concentration of food establishments is based on market place assumptions of the potential influence of exposure on use
 - Numerous convenience stores and FFRs (low-cost, impulse buying),
 - Fewer supermarkets (more medium costs SM than low or high cost SM) (purpose/considered buying)
 - Few trails, sports fields, short street-blocks, etc.
- GLOBAL TREND since 1960s, most BEs contain MORE stressors and FEWER enablers of PA and healthy diet

Receptors

Mobility patterns, neighborhood and places visited

Geographic context of BE receptors

- Static/dwell areas and places
 - Residential or work neighborhood
 - Other non-residential and/or non-work
- Dynamic/move locations
 - Places visited
 - Travel routes (from travel diaries or GPS traces)
- Uncertain geographical context
 - James et al. in Effects of buffer size and shape on associations between the built environment and energy balance. Health Place. 2014 May;27:162-70. doi:10.1016/j.healthplace.2014.02.003. Epub 2014 Mar 7.
- Spatial polygamy
 - Matthews S, Yang TC. Spatial Polygamy and Contextual Exposures (SPACEs): Promoting Activity Space Approaches in Research on Place and Health. Am Behav Sci. 2013 Aug 1;57(8):1057-1081.

• Moving away from place-based to people-based measures of exposure

- Kwan MP. From place-based to people-based exposure measures. Soc Sci Med. 2009 Nov;69(9):1311-3. doi: 10.1016/j.socscimed.2009.07.013. Epub 2009 Aug 7
- Kestens et al. Using experienced activity spaces to measure foodscape exposure. Health & Place 16 (2010) 1094–1103

Example: Exposure to fast food restaurants

Scully et al. A time-based objective measure of exposure to the food environment. Under review

- Stressor:
 - Fast food restaurant counts, densities, percentages, etc., within proximity of participant
- Receptor:
 - Participant's dwells and moves

Other references:

- Self-reported activity locations: VERITAS, Chaix et al. 2012
- Work commute path: Burgoine et al. 2013, & Burgoine et al. 2014
- GPS: Zenk et al. 2011, Christian 2012

At what proximity may contact occur?

Scully JY et al.

- 21 m
 - Width of a street
 - Farthest distance at which a human face is recognize
- 100 m
 - Length of a city block
 - Pedestrian travel
- 500 m
 - What is accessible by car
- Half-mile

Exposure duration weighted by the number of proximate fast food restaurants Scully JY et al.

GPS travel line intersecting two or more overlapping buffers = time inside overlapping buffers *

JFI

Duration of exposure = 9.3 + 8.5 + 3 Weighted duration of exposure = 9.3*1 + 8.5*2 + 3*1

Results

Scully JY et al.

	Fast food	Exposure
Proximity	restaurant	duration
, i oxinity	Mean count/day	Mean minutes/day
	(SD)	(SD)
21 m	1.5 (1.1)	1.0 (1.8)
100 m	8.1 (4.5)	17.0 (16.6)
500 m	24.34 (13.2)	84.8 (56.7)
Half mile	34.1 (18.9)	117.7 (69.2)

UFL

🛧 Home	
Fast food restaurants	
GPS trace	
21 m	
100 m	
500 m	
Half mile	
FFR visited	
1/2 mile home buffer	
	Miles
0 0.75 1.5 3	Source: Es Getmappin

Results: Odds of visiting > one FFR

Scully J Y et al. In progress

	21 meters				100 meter	S	500 meters		S	Half mile		
						p-			p-			
	Odds	95% CI	p-value	Odds	95% CI	value	Odds	95% CI	value	Odds	95% CI	p-value
A: By durat	ion of e	exposure*										
(Intercept)	0.53	0.22-1.27	0.147	0.47	0.19-1.2	0.109	0.7	0.29-1.69	0.426	0.55	0.23-1.36	0.191
Tertile 1	Ref			Ref			Ref			Ref		
Tertile 2	2.06	1.17-3.65	0.011	1.24	0.7-2.18	0.456	1.06	0.61-1.83	0.844	1.93	1.1-3.39	0.021
Tertile 3	2.8	1.58-4.96	0.000	2.89	1.65-5.07	0.000	1.72	1-2.94	0.046	2.16	1.22-3.83	0.008
B: By count	t of FFF	₹s*										
(Intercept)	0.78	0.34-1.	83 0.570	0.74	0.31-1.8	0.507	0.77	0.33-1.81	0.541	0.86	0.37-2	0.720
Tertile 1	Ref			Ref			Ref			Ref		
Tertile 2	1.26	0.73-2.	18 0.408	1.16	0.66-2.04	0.601	1.32	0.76-2.3	0.323	1.06	0.6-1.86	0.849
Tertile 3	1.41	0.8-2.4	7 0.229	1.68	0.96-2.93	0.066	1.38	0.76-2.51	0.289	1.49	0.83-2.68	0.175
C: By weigh	C: By weighted duration of exposure*											
(Intercept)	0.56	0.23-1	.33 0.182	0.49	0.2-1.21	0.117	0.72	0.3-1.75	0.462	0.8	0.34-1.92	0.616
Tertile 1	Ref			Ref			Ref			Ref		
Tertile 2	1.62	0.92-2	.85 0.092	1.4	0.79-2.47	0.248	1.15	0.67-1.99	0.606	1.25	0.72-2.17	0.423
Tertile 3	2.69	1.53-4	.73 0.001	3.07	1.76-5.36	0.000	1.47	0.86-2.52	0.158	1.15	0.67-1.99	0.600

* Adjusting for age, gender, race, education, income, number of cars in household, household size, commute distance, and residential density.

5. SmartMaps

Example: Spatial modeling and mapping of BE and behavior at the micro-level

TELUMI example Transportation-Efficient Land Use Mapping Index

A tool that identifies locations with demand for alternative travel modes (walking, biking, transit) using land use measures

Objective: to help local jurisdictions make decisions on where to target infrastructure and land use investments to support alternative travel modes

Moudon et al. Transportation-Efficient Land Use Mapping Index (TELUMI), a Tool to Assess Multimodal Transportation Options in Metropolitan Regions. International Journal of Sustainable Transportation. 5:111–133, 2011 DOI: 10.1080/15568311003624262

TELUMI as a multi-functional tool

Interdisciplinary and interpersonal

to visually display land-use conditions associated with different modes of travel,

to perform advanced quantitative analyses of land-use attributes.

to effectively help bridge common communication gaps between lay and professional audiences.

Interactive —use concrete, readily identifiable individual land-use variables

to facilitate scenario building

to target intervention strategies or investment decisions, such as augmenting residential or employment density or building sidewalks, by evaluating their effectiveness in improving transportation efficiency.

Multi-scaled —

to analyze land use at the regional level (macro scale), with land-use characteristics captured via fine-grained data (micro scale)

Transportation-Efficient Land Use Mapping Index

Final composite layer

King County-Seattle transportation efficiency areas

> HIGH EFFICIENCY LATENT EFFICIENCY LOW EFFICIENCY

One land use attribute/variable per map TELUMI Six land use domains

Nine variables

	DOMAIN	SPECIFIED VARIABLES/MEASURES			
I	Density	 Residential Density [net] Employment Density [net] 			
II	Mix of uses	 Proximity to groups of destinations (NC= Neighborhood Center) 			
III	Network Connectivity	 Average street-block size 			
IV	Parking supply and management	 % at-grade parking lots in commercial parcels 			
V	Pedestrian environment	 Topography Traffic volume (School / Shopping Trips) 			
IV	Affordable housing	 % of mean assessed residential land and improvement value 			

TELUMI Three levels of Transportation Efficiency (TE)

Transportation	Systems	Cartographic Model				
Transportation Options	Investment Outcomes	Zone/Threshold Name	Zone Characteristics	Example of Threshold Measure		
Low number and types of options	Likely to be ineffective	Low TE	Zones with high number of SOV and low number of transit trips	>90+ % of trips in SOV		
Medium number and types of options	Likely to be highly effective	Latent TE	Zones with medium number of transit or para-transit trips	>75 % of trips in SOV		
High number of types and options	Likely to be effective	High TE	Zones with high number of transit, para-transit, and non-motorized trips, and low SOV number of trips	<75 % of trips in SOV		

Land use data transformation

Variable 1 Residential density

Map of Residential Density

Nodata

Low Latent

High

Variable 2 Employment density

Map of Employment Density

Proportion of three TE classes

Variable 4 Street-block size

Map of Average Block Size

Proportion of three TE classes

Variable 5 Parking

0.2%

35>

Variable 9 Affordable housing

Map of Affordable Housing

Proportion of three TE classes

Composite Layer

Binary logit model to generate weights for each land use variable

- Dependent variable: Dichotomized ridership data <37 versus >37 riders per bus stop per day
 - Threshold of 37 riders per stop (37x4=148 per intersection) divided the sample population of bus users into those in the top 30 percent of higher bus usage, and all the others.
 - Data distribution: 63 percent (3,356 out of 5,363) of the bus stops and 91 percent of boardings and alightings (430,684 out of 473,169) within the Seattle city limits.

 Independent variables: 9 TELUMI measures averaged in a quarter-mile radius buffer, centered on bus stop locations

Composite Layer Logit Model Results

*B val

**Si0

Nagelkerke R-square: 0.344

V	ariable Name	B *	S.E.	Sign.**	Exp(B)
	res_den	0.662	0.053	0	1.939
	p_parking	0.506	0.076	0	1.659
	nc2	0.471	0.08	0	1.602
	emp_den	0.416	0.056	0	1.517
	slope	0.324	0.07	0	1.383
	blk_size	0.311	0.046	0	1.365
	sch_traff	0.002	0	0	1.002
	ret_traff	0	0	0	1
	Constant	-5.181	0.179	0	0.006
ues are nificant	the weights ap at 0.99 level	plied to eac	ch variable	to calculate	e the composite layer

Final composite layer

Map of Composite Measure

Proportion of three TE classes

Areas in three TE zones King County

Distribution of residential units and employment in the three TE Zones

Conclusions

- City planning can improve walkability and support active living
- Transport planning can incentivize transit use and active travel
- City and transport planning can rely on spatial modeling of BE and walking/transit use behavior
- Behavior-built environment research can benefit from advances in sensor technology and exposure theory and measures
 - Pluses of time-based exposure measures
 - Travel mode independent
 - Cumulative exposure
 - Removal of places of intended (selected) exposure: Home, work, and places used
 - Remaining questions
 - Path selection bias
 - Measuring influence of environmental knowledge on mobility patterns

Thank you

