Reading in an image
Lecture 7’s handout contained some relatively high-level code for reading in an image file using an InputStream, however I’ve always found it a bit hit and miss as to whether it will give you the image width and height (it was largely just to show you an example of reading a binary file). Here’s some simpler, and more robust, code that does the same job (you’ll need to import java.awt.*):

Panel panel = new Panel();

Image image = Toolkit.getDefaultToolkit().getImage(f.getPath());

MediaTracker mTracker = new MediaTracker(panel);

mTracker.addImage(image,1);

try {

mTracker.waitForID(1);

} catch (InterruptedException ie) {

ie.printStackTrace();

}

int width = image.getWidth(null);

int height = image.getHeight(null);

Manipulating Images using Binary
// Code to read an image into a int array,

// manipulate it and put it back into an Image.

// In the following we assume that the Image object

// is called “image” and that the Iimage is 150 wide by 100 high.

int pixels[] = new int [150*100];

PixelGrabber pg = new PixelGrabber(image,0,0,150,100,pixels,0,100);

pg.grabPixels();
// The pixels are now in the array “pixels”.

// We now need to expand them out. We’ll put them

// in four arrays, one for the alpha values,

// and one each for the red, green and blue values.

int [] alpha = new int [150*100];

int [] red = new int [150*100];

int [] green = new int [150*100];

int [] blue = new int [150*100];

for (int i = 0; i < (150 * 100); i++) {

int p = pixels[i]

alpha[i] = 0xff & (p >> 24);

red[i] = 0xff & (p >> 16);

green[i] = 0xff & (p >> 8);

blue[i] = 0xff & (p);

}

// We now have alpha, red green and blue values

// in separate arrays. Their values will be between

// 0 and 255. We can manipulate them or record their

// levels while in these arrays. Alternatively we can

// use them to set other variables (for example whether

// a geographical point contains forest or buildings).

// If we’ve altered the pixels and we want to redisplay

// them we now have to put them back into an Image. First

// we have to recompress them into a single int array.

for (int i = 0; i < (150*100); i++) {

int a = alpha[i] & 0xff;

int r = red[i] & 0xff;

int g = green[i] & 0xff;

int b = blue[i] & 0xff;

pixels[i] = (a << 24) | (r << 16) | (g << 8) | b;

// Note that if we want to set a definite figure for all

// the pixels we just replace the variable name with a

// figure between 0 and 255 in the line above. For example,

// it is usual to set all the alpha values to either 255 or

// zero because web browsers don’t cope well with partial

// transparency at present.

}

// Assuming we’re in a Component with a createImage method we can

// now make our new Image.

Image alteredImage =

createImage(new MemoryImageSource(150, 100, pixels, 0, 150);

Making Images
1) In order to make an image, you should just be able to use createImage from a Component, however, you may find you need to get a Toolkit object. This represents the link between the JVM and the local machine’s drawing routines. You can’t make Images in memory with a Graphics object. You get a Toolkit by calling getToolkit(), which is inherited from Component. It is usual to get this from the main container you’ll be drawing in.

For example…

image = panel.getToolkit().createImage(MemoryImageSource);

This, for convenience, takes in a byte array directly, but this has to be data read from an image file , like a gif, rather than pixel data.
2) Remember that in order to display an image consistently it is necessary to put the image drawing routine in the paint() method of any major container. The following class allows you to do this without returning errors before the image exists. You can safely add object of this class to frames without setting the Image first because the paint() method checks whether the Image exists. You should call setDisplayImage() and repaint() to paint an image into the panel. This class has the added advantage that it stores the Image in an Image format for you, rather than loosing it when you paint it to the screen.

package uk.ac.leeds.ccg.imagemaker;

import java.awt.image.*;

import java.awt.*;

public class ImagePanel extends Panel {

 private Image displayImage = null;
 public ImagePanel () {

super();

 }

 public void setDisplayImage (Image displayImageIn) {

displayImage = displayImageIn;

 }

public Image getDisplayImage () {

return displayImage;

 }

 public void paint (Graphics g) {

if (displayImage != null) {

g.drawImage(displayImage, 0, 0, this);

}

}

}
import java.awt.*;

import java.awt.image.*;

/**
 * Does what it says on the tin.

 * Makes a grey box.

**/

public class GreyBox extends Frame {

public GreyBox() {

setSize(300,300);

setVisible(true);

int width = 16;

int height = 16;

int[] pixels = new int[width * height];

for (int w = 0; w < width; w++) {

for (int h = 0; h < height; h++) {

int pixelValue = (w * h > 255) ? 255 : w * h;

Color pixel =

 new Color(pixelValue, pixelValue, pixelValue);

pixels[w + h*width] = pixel.getRGB();

}

}

MemoryImageSource memImage =

new MemoryImageSource(16,16,pixels,0,16);

Image image = createImage(memImage);

getGraphics().drawImage(image, 100, 100, this);

}

public static void main (String args[]) {

new GreyBox();

}

}

paint() and update()

The call to paint() is actually slightly more complex than outlined in the lecture.

When a portion of the screen needs redrawing, the method update() is called by the JVM. This fills the area with the applet’s background colour then calls paint(). If paint() then changes the background to a different colour you can get a flash of the first background colour with each repaint. You might, therefore, want to override update() so you don’t get this.

repaint()

It’s actually more usual to call the method repaint() than either paint() or update().

This method calls update() which in turn calls paint(), however repaint() also allows you to control which bits are painted.

repaint(int left,int top,int width,int height)

As the browser’s JVM will usually wait until it’s stopped processing before it repaints the GUI, you can force it to only wait a specified time before it must repaint.

repaint (long maxDelay);

repaint(long maxDelay, int left, int top, int width, int height)

In fact, it’s not just repainting that will wait for processing to finish, it’s quite possible the whole GUI will. Ideally when programming for a GUI we need to minimize the processing done by the GUI so it has a chance to take in more user generated events and repaint when necessary.

We need to segregate the processing – hence MVC and n-tier architectures. Alternatively, we should warn the user that time will be taken processing, and show them a progress bar (we can also split off bits of the processing into separate bits of the processing power called ‘Threads’ but we won’t talk about these in detail).

If we don’t follow these ideas, the GUI will grind to a halt waiting for a slot in the processing time in which to catch up. The repaint() method encourages us to limit the processing done by the GUI and maximize the time the user can use the GUI.

For example, take an applet that displays an image and has a scrolling title beneath it.

We could write the image display and scroll display straight into paint() and call that once. Paint would be trapped into painting the scroll and wouldn’t cope with more general requests until the scrolling was complete.

Instead we should repaint only the scrolling bit and pass in the text we want displayed using a String variable that repaint() sets and paint() can see. This frees ‘paint’ for more general repainting jobs that it can do as well when they’re needed.

Drawing on a component

Note that the first example removes whatever is drawn on it when a repaint happens:

import java.awt.*;

class Noodle {

public Noodle () {

Frame f = new Frame(“Noodle”);

f.setSize(200,200);

f.setVisible(true);

Graphics g = f.getGraphics();

g.drawLine(0,200,200,0);
}

public static void main (String args[]) {

new NoodleDoodle();

}

}
Unlike this extended class, which repaints the drawing each time:

import java.awt.*;

class NoodleDoodle extends Frame {

public NoodleDoodle() {

setSize(200,200);

setVisible(true);

repaint();
}

public void paint (Graphics g) {

g.drawLine(0,200,200,0);

}

public static void main (String args[]) {

new NoodleDoodle();

}

}
Or, in two classes:

import java.awt.*;

class Doodle {

public Doodle() {

NoodleDoodle nd = new NoodleDoodle();

nd.setSize(200,200);

nd.setVisible(true);

nd.repaint();
}

public static void main (String args[]) {

new NoodleDoodle();

}

}
import java.awt.*;

class NoodleDoodle extends Frame {

public void paint (Graphics g) {

g.drawLine(0,200,200,0);

}

}
