American Standard Code for Information Interchange (ASCII)

7 bit character set.

	!
33

"
34

35

$
36

%
37

&
38

`
39

(
40

)
41

*
42

+
43

,
44

-
45

.
46

/
47

0
48

	1
49

2
50

3
51

4
52

5
53

6
54

7
55

8
56

9
57

:
58

;
59

<
60

=
61

>
62

?
63

@
64

	A
65

B
66

C
67

D
68

E
69

F
70

G
71

H
72

I
73

J
74

K
75

L
76

M
77

N
78

O
79

P
80

	Q
81

R
82

S
83

T
84

U
85

V
86

W
87

X
88

Y
89

Z
90

[
91

\
92

]
93

^
94

_
95

`
96

	a
97

b
98

c
99

d
100

e
101

f
102

g
103

h
104

i
105

j
106

k
107

l
108

m
109

n
110

o
111

p
112

	q
113

r
114

s
115

t
116

u
117

v
118

w
119

x
120

y
121

z
122

{
123

|
124

}
125

~
126

DEL
127

For more information on Unicode see…

http://www.unicode.org/

These are the escape characters you need to use in Strings to replace certain elements.

\' = Single quote

\" = Double quote

\\ = Backslash

\r = Carriage return

\n = New line or Line feed

\f = Form feed

\t = Tab

\b = Backspace

Note that there are also ASCII/Unicode numbers for these. Note also that when you drop a line in Windows, text processors put in an invisible carriage return as well as a new line character. In UNIX, they just use the new line character. Rather than writing these in yourself, you should try and use Java's methods for writing new lines (e.g. the one in BufferedWriter). These pick the appropriate combination of end of line characters depending on the operating system.

Dealing with hardware

As well as files and other programs, there is one other thing Java programs can deal with, and that’s computer hardware – for example, a scoreboard at an athletics stadium, or a digitizing tablet. We will not deal with Java’s communication with hardware as this is a subject beyond the level of this course. If you are interested in this, for example because you want to write a program that monitors some scientific equipment, the Classes to do this can be found at the following website:

http://www.oracle.com/technetwork/java/index-jsp-141752.html
I/O Code chunks

Note that the next two chunks are not complete code – they don’t, for example, contain all the necessary try/catch statements.

Reading bytes from a file.

InputStream f = new FileInputStream(fileObject);

// Get the number of bytes in the file.

int n = f.available();

// Make a byte array to take in the bytes.

byte[] b = new byte[n];

// Read the bytes into the array. If the number

// coming in isn’t equal to the total, give an error.

if (f.read(b) != n) {

System.out.println(“Read failed.”);

}

f.close();

Writing bytes to a file.
// Make our bytes. The String class has a getBytes() method.

String str = “Are you gonna tell me what your up to Den?”;

Byte buffer = str.getBytes();

OutputStream f = new FileOutputStream(fileObject);

// Now write to the file using either…

for (int i = 0; i < buffer.length; i++) {

f.write(buffer[I]);

}

// Or,

f.write(buffer);

f.close();

Reading and writing characters to a file cast as ints
Note in the following that the read and write statements, if not passed in a character array, read and write ints. The characters are cast into integer representations of themselves between the two methods. In the files, they will appear as characters. You can cast them back to characters within your program. The usual way to get and write characters as characters is to pass in character arrays as arguments to the read and write methods – see the method docs and example following this one for details.

import java.io.*;

public class Copy {

public static void main(String[] args) throws IOException {

File inputFile = new File("farrago.txt");

File outputFile = new File("outagain.txt");

FileReader in = new FileReader(inputFile);

FileWriter out = new FileWriter(outputFile);

int c;

while ((c = in.read()) != -1)

out.write(c);

in.close();

out.close();

}

}

Writing Characters to files
import java.io.*;

class FileWriterDemo {

 public static void main(String args[]) throws Exception {

 String source = "Now is the time for all good men\n"

 + " to come to the aid of their country\n"

 + " and pay their due taxes.";

 char buffer[] = new char[source.length()];

 source.getChars(0, source.length(), buffer, 0);

 FileWriter f0 = new FileWriter("file1.txt");

 for (int i=0; i < buffer.length; i++) {

 f0.write(buffer[i]);

 }

 f0.close();

 FileWriter f1 = new FileWriter("file2.txt");

 f1.write(buffer);

 f1.close();

 FileWriter f2 = new FileWriter("file3.txt");

 f2.write(buffer,buffer.length-buffer.length,buffer.length);

 f2.close();

 }

}

Reading characters from files with a buffer

One of the advantages of this method is the ability to read lines as Strings directly. Buffered writers allow you to put in newline characters, separating any character streams you have into new lines in the file.

import java.io.*;

class FileReaderDemo {

 public static void main(String args[]) throws Exception {

 FileReader fr = new FileReader("FileReaderDemo.java");

 BufferedReader br = new BufferedReader(fr);

 String s;

 while((s = br.readLine()) != null) {

 System.out.println(s);

 }

 fr.close();

 }

}

Serialization

http://download.oracle.com/javase/tutorial/essential/io/objectstreams.html
Using a URLConnection

import java.net.*;

import java.io.*;

import java.util.Date;

class UCDemo

{

 public static void main(String args[]) throws Exception {

 int c;

 URL hp = new URL("http://www.starwave.com/people/naughton/");

 URLConnection hpCon = hp.openConnection();

 System.out.println("Date: " + new Date(hpCon.getDate()));

 System.out.println("Content-Type: " + hpCon.getContentType());

 System.out.println("Expires: " + hpCon.getExpiration());

 System.out.println("Last-Modified: " +

 new Date(hpCon.getLastModified()));

 int len = hpCon.getContentLength();

 System.out.println("Content-Length: " + len);

 if (len > 0) {

 System.out.println("=== Content ===");

 InputStream input = hpCon.getInputStream();

 int i = len;

 while (((c = input.read()) != -1) && (--i > 0)) {

 System.out.print((char) c);

 }

 input.close();

 } else {

 System.out.println("No Content Available");

 }

 }

}
We’ll look more at URLConnections when we look at network communications.
Reading in an Image using a FileInputStream

public void openImage () {

FileDialog openDialog = new FileDialog(frame, "Open file",

FileDialog.LOAD);

openDialog.show();

file = new File(openDialog.getDirectory()+openDialog.getFile());

FileInputStream fin = null;

try {

fin = new FileInputStream(file);

} catch (FileNotFoundException e) {

e.printStackTrace();

}

Image image = null;

ByteArrayOutputStream baos = new ByteArrayOutputStream();

try {

int c;

while((c = fin.read()) >= 0) {

baos.write(c);

}

image = panel.getToolkit().createImage(baos.toByteArray());

} catch(IOException e) {

e.printStackTrace();

}

panel.setDisplayImage(image);

panel.repaint();

}

}

You may wonder how this works. It is pretty clever. Note the section:

int c;

while((c = fin.read()) >= 0) {

baos.write(c);

}

This is the key bit. InputStreams read until they can’t any more, then they return a -1 int, so that’s what we check for (as it happens, the value is also put simultaneously into the int variable ‘c’). However, what happens if we hit a -1 in the data? Won’t the loop end? Well, as it happens, it won’t, because the read method only reads a byte at a time, so we never get a proper number until the final -1 int is returned. The code just reads the bytes one at a time into the byte array stream. Byte array streams are really useful, as they are basically just a very big hole for dumping bytes into. If we had to use a real byte array we’d have to know how many bytes we had to size it before we used it, this way we can just keep reading bytes in, and at the end we can use byte array stream’s toByteArray method, which returns us a sized and filled byte array. Of course, if we wanted to turn that into ints, it would take a little processing (see http://download.oracle.com/javase/tutorial/java/nutsandbolts/op3.html for the starting point), but here we’re only interested in a byte array, as we shall see later in the course when we deal with Images.
