Control Statements

Operators:

The basic numerical operators you’ll probably use are…

+
Addition

-
Subtraction

*
Multiplication

/
Division

%
Modulus
Gives remainders, e.g., (11.5 % 5) = 1.5

++
Increment
E.g.,
int i = 1;

i++;

i now equals 2.

The basic relational operators are…

==
Is equal to
!=
Not equal to

>
Greater than

<
Less than

>=
Greater than or equal to

<=
Less than or equal to

Note that <word> is used in Java 1.5 in a different way. It also introduced the syntax @word and “…”. We’ll look at these later in the course.

The most common way of assigning a value to a variable is with the ‘equals’ sign, e.g.

int galaxy;

galaxy = 15;
Because the equals sign is used for this, a double equals sign is used for the relationship ‘equals’, e.g.,

if (galaxy == 15) {System.out.println(“Chocolate’s on special”)}

You may also need the following logical operators:

&
Logical AND

E.g. if ((a == 1) & (b == 2))

 System.out.println(“Both < 3”);

|
Logical OR

E.g. if ((a == 1) | (b == 2))

 System.out.println(“At least one < 3”);

&&
Short circuit AND

Same as &, but does not assess 2nd term if first not true.

||
Short circuit OR

Same as |, but does not assess 2nd term if first is true.

If you’re not used to logical operators they can seem quite odd, but they’re very useful. Here’s some examples:

English:

If variable1 is true and variable2 is 10, do something.

Java (two versions, the second is more efficient as the computer doesn’t work out the variable2 chunk if it already knows the variable1 chunk is wrong:

if ((variable 1 == true) & (variable2 == 10)) doSomething();

if ((variable 1 == true) && (variable2 == 10)) doSomething();

English:

If variable1 is false or variable2 is 10, do something.

Java (two versions):

if ((variable 1 == false) | (variable2 == 10)) doSomething();

if ((variable 1 != true) | (variable2 == 10)) doSomething();

Can you imagine how the more efficient || operator would work in the above situation?

You can find a complete list of operators at:

http://download.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
Syntax for Control Statements:

if (condition) {statements;}

if (condition) {

statements;

} else {

statements;

}

for (variable definition and assignment; condition; increment) {statements;}

The switch statement: an efficient ‘if / else if / else’ ladder replacement
The switch statement is much more efficient than the if /else if / else ladder as it only involves one condition assessment, even to get to the default. Therefore, you should use it instead if you can.
for loops

for (variable initialization; condition; increment)statement;

for (variable initialization; condition; increment){statements;}

The variable should be declared if it hasn’t been declared before (indeed, it’s usual to declare it in the for statement. Note that the scope of variables declared in the for statement is any block associated with the for statement).

Note also that none of the expressions in the statement are compulsory. You can also separate multiple variables and increments with a comma. Thus all the following are legitimate…

for (; done != true ;) {

for (; ;) {

 if (a = 10) done = true;

a++;

 a++;

}

}

(for loop without increment)
(infinite loop – dangerous but possible)
for (int a=0, int b=10; a > b; a++, b++) {

System.out.println(“a = “ + a + “ b = “ + b);
}

while loops: a more effective for loop without increment

Other flow control expressions

If you ever coded in an old computer language like BASIC you’ll have used the ‘goto’ statement, a terrible statement that let you jump around in the program to different code line numbers, and resulted in a big old pile of spaghetti for code. Well, there are equivalents in Java, but you can only use them to get in and out of nested blocks. You are unlikely to use them (indeed, they’re viewed as darn sloppy programming and should be avoided at all costs), but I mention them for completeness.
break;
A break statement exits the current block and starts the code running again after its last bracket.

A more deadly break statement allows you to jump to the end of a named block of code provided the block you are in is nested inside the named block at the time. You name a block by preceding its first bracket with a name and a colon. For example,

boolean t = true;

blockOne: {

blockTwo: {

blockThree: {

if (t == true) break blockTwo;

System.out.println(“This isn’t printed”);

}

System.out.println(“This isn’t printed”);

}

System.out.println(“This is printed”);

}
continue;

A continue statement skips the rest of a loop and goes back to the loop’s conditional statement or (in the case of a for loop) increment statement. For example, the following code skips back to the beginning of the for loop for even numbers, but prints odd numbers.

for (int i = 0; i < 20; i++) {

if (i%2 == 0) continue;

System.out.println(i + “ is an odd number”);

}
As with break, you can jump to an arbitrary labeled block by putting the label name after the ‘continue’, provided you are nested within that block.

Looping through 2D arrays

The looping to dealing with 2D arrays is one of the most important structures you ever learn in any programming language. Here’s how it is done:

for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array[i].length; j++) {

array[i][j] = new SomeClass();

}

}

Note that we use the array (“array”) in the above as if it was an array of arrays. We can get the first dimension using array.length, and the length of the current array in the second dimension using array[i].length, where i will be some position in the first dimension. This is an extremely critical piece of code, so make sure you understand what it is doing. It might help to draw a 3 by 2 array at this stage and work through the loops to see what’s happening. Two additional comments might help:

1) j will never reach the value array[i].length. This makes sense when we realise that the array[i].length positions in the array will be labelled from zero to array[i].length – 1. Remember that 10 positions would be numbered 0 to 9.

2) It will help if you realise that the i variable will increase by one each complete run through of the j variable from zero to array[i].length. Each time j reaches array[i].length – 1 it will be reset to zero and the i loop will start its next iteration.

When you use this code, which you will, the most important thing is that you consistently use i and j to refer to the same dimensions throughout your code. Don’t, for example, do this…

for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array[i].length; j++) {

array[j][i] = someValue;

}

}

	(
	What do you think would happen if we used the above code on the following arrays?

int array1 = new int[2][1];

int array2 = new int[2][2];

If you make this mistake, and you’re lucky, your code will crash out and tell you that you’ve tried to fill a location in the array that doesn’t exist. If you’re unlucky it will just transpose all the values in your arrays so the rows become the columns and vice versa without telling you.

There are two important variations on the 2D array loop that might be useful to know about.

In the first version, if you have two arrays the same size, you can use the i and j values to loop through the same positions in both, for example:

for (int i = 0; i < arrayA.length; i++) {

for (int j = 0; j < arrayA[i].length; j++) {

arrayA[i][j] = arrayB[i][j];

}

}

In the second version, we look at a location relative to our current position in the array:

for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array[i].length; j++) {

 if ((i > 0) && (j > 0)) array[i][j] = array[i-1][j-1];

}

}

If we imagine our array as a table, this code sets the array value at [i][j] to whatever the value is in the array one cell up and left of it. As you can probably tell, this wouldn’t work if the cell was on the top or leftmost line, so we’ve put in a simple if statement to catch these boundary problems.

These are both very important variants on the 2D array loop. The former is used for comparing different datasets at a single location in a 2D space, while the latter is very important when altering a location in 2D space to reflect its surroundings.

Efficiency

The following are a few tips for efficiency. Some of them directly contradict Java’s Object Orientated Philosophy, and many are inelegant. When you use them is therefore a matter of how slow your program is running and whether you prefer code that runs well, or looks good. As you become familiar with the JVM and talk to other programmers you’ll doubtless pick up more tips.

1) Use switch instead of if / else if / else ladders. Switch requires the computer to make one decision, even if the default case is true. To get to the final else statement in a ladder will require at least two decisions.

2) There is a Java object called a Vector, which is an easily extended array. However, using Vectors is inefficient because the computer never knows how large they’re going to be. With arrays, the computer at least knows this information some of the time. Try to use arrays instead of Vectors, even though the code to enlarge them is worse.

3) Methods that are made ‘final’ are slightly quicker to run, because the compiler knows that they’re the only version and can’t be overridden. When it makes the bytecode it can copy the whole of the method into the code where it is used – the JVM doesn’t have to run off and decide which method to use when the program is run.

4) Try to call fewer methods if you find your program isn’t running very fast. This may seem odd, but it’s often quicker to copy the code in several places, rather than extract it into a separate method that is called in several places. There’s a limit to this obviously - I’d say that if a chunk of code is three or four lines, it’s worth having several copies, rather than putting it in a method. Anything more than that and you need a separate method.

Simple if / else

if (condition) statement;

if (condition){statements;}

if (condition) statement;

else statement;

if (condition){statements;}

else {statements;}

The ‘if / else if / else’ ladder

if (condition)

statement or {statements;}

else if (condition)

statement or {statements;}

else if (condition)

statement or {statements;}

else

statement or {statements;}

The value of the named variable determines which block of statements is done. For example, if the variable equals value2, statements2 will be run, and then the computer will jump to the last bracket.

The values cannot be variables themselves.

The ‘break’s are optional, if you leave one out, the computer will just run on into the next value’s case statements. For example, if the break in the value2 block was missing and the variable equaled value2, statements2 and statements3 would be run.

Note that all the values must be different and the statements do not each need to be inside their own block. The switch block is the block they run in.

switch (variable) {

	case value1:

		statements1;

		break;

	case value2:

		statements2;

		break;

	case value3:

		statements3;

		break;

	default:

		statements4;

}

The ‘?:’ Ternary Operator: an efficient if / else replacement

condition?expresion1:expresion2

If the condition is true, expression1 is run, otherwise expression2 is run. For example,

length = (feet == true) ? (length*0.3048) : (length*3.2808);

is the same as…

if (feet == true)

	length = length*0.3048;

else

	length = length*3.2808;

The ?: ternary operator is a quite a dandy bit of programming – if you use it the pros will certainly take you to their heart as One Of Their Kind. I guess you’ll be pretty excited at the prospect of that…

while (condition) {	

	statements;

}

Statement/s run only if the condition is true. The condition is assessed before the block is run.

do {	

	statements;

} while (condition)

Statement/s run once whether the condition is true or not, then run until the condition is false. The condition is assessed at the end of the block run.

